

Vocabulary: Shapes of Algebra

as shown above, x² + y² = r².
Centered at some other point (x₂, y₂), radius r, as shown above, (x - x₂)² + (y - y₂)² = r².

Note: the **Distance Formula** is just a variation on this last equation. If we wish to find the distance between any 2 points (x_1, y_1) and (x_2, y_2) on a coordinate grid we can create a right triangle and apply the Pythagorean theorem to find the square of the distance between the 2 points. Taking the square root give the distance between the points.

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

The center of the circle is (4, 2) and the radius is 3, the distance between (4, 2) and (7, 2). Thus the equation is: $(x - 4)^2 + (y - 2)^2 = 3^2$.

4. What is the **center** of the circle with **equation** $(x - 3)^2 + (y + 2)^2 = 16$? Find 4 points on the circle. Comparing this equation with $(x - x_2)^2 + (y - y_2)^2 = r^2$, we see that $(x - 3)^2 + (y - 2)^2 = 4^2$, so (3, -2) is the center of the circle and the radius is 4.

To find points on the circle we can substitute any value for x (or y) into the equation to find the corresponding value for y (or x). The circle is not centered on the origin, so it will be more difficult, but not impossible, to take advantage of symmetry to generate more points on the circle. (A drawing would help us use symmetry.)

Say x = 0, then (0 - 3)² + (y + 2)² = 16, so 9 + (y + 2)² = 16, so (y + 2)² = 7, so, taking square roots, y + 2 = 2.65 (approx.) Thus y = 0.65. This leads to the point (0, 0.65). When we took the square root of both sides there is actually another solution, y + 2 = -2.65, so y = -4.65. This leads to the point (0, -4.65).
Say x = 3, then (3 - 3)² + (y + 2)² = 16, so

 $(y + 2)^2 = 16$, so, taking square roots, y + 2 = 4, or y = 2, leading to the point (3, 2). Or y + 2 = -4, or

y = -6, leading to the point (3, -6). • Say y = -2, then $(x - 3)^2 + (-2 + 2)^2 = 16$, so $(x - 3)^2 + 0 = 16$, so x - 3 = 4, or x = 7, leading to the point (7, -2). Or, $x - 3 = -4$, leading to the point (-1,2).
These points are all pictured below. You can see how the points labeled are symmetrically placed.

Linear Equations or Inequalities:	5. Solve $5x + 7 \le 42$ graphically.	
are equations (or inequalities) in one	3 1 3	
or more variables, where any variable	We graph each side of the inequality as a function, i.e., $y =$	
terms have power 1. For example, 2x	5x + 7 and $y = 42$. Note that the intersection of these two	
+7.5 = 11 is a linear equation in 1	lines satisfies the equation $5x + 7 = 42$ and occurs when x	
variable. $Y = 2x + 7.5$ is a linear	= 7. (The point (7, 42) lies on both lines.)	
equation in 2 variables.		
	However, we need to find when $5x + 7 \le 42$, not just $5x + 7$	
Solving Linear Inequalities in One	= 42. The points on the line	
Variable Symbolically	y = 5x + 7 satisfying the condition that the y-coordinate is	
Students already understand how to	less than 42 are all the points on the bolded part of the line	
apply the <i>Properties of Equality</i> (See	shown below. Since the original inequality is asking just for	
Moving Straight Ahead, or Thinking	the <i>x</i> -values of these points, the solutions are the <i>x</i> -values	
With Mathematical Models or Say It	corresponding to the points on this bolded section of the	
With Symbols) to solve linear	line	
equations in 1 variable. They now	y = 5x + 7. That is, the x-values for these points satisfy x <	
have to amend this strategy to solve	7. This solution is illustrated on the <i>x</i> -axis in the following	
linear inequalities in 1 variable.	diagram.	
Specifically, they find that:		
Adding (or subtracting) the		
same quantity to each side of a		
linear inequality will produce an		
equivalent inequality, that is,	60 (7, 42)	
an inequality with the same	<u>40</u> x y = 42	
solutions, and	20	
Multiplying or dividing each		
side of a linear inequality by the	Solution $x \ge 7$	
same positive quantity will produce an equivalent		
inequality, but		
 Multiplying or dividing each 		
side of a linear inequality by a		
negative quantity will NOT		
produce an equivalent		
inequality, unless the direction		
of the inequality sign is	6. Solve $5x + 7 \le 42$ symbolically.	
reversed. For example, 7 < 10	$0. \text{ Solve } 3X + T \leq 42 \text{ Symbolically}.$	
is true but multiplying by -1	$5x + 7 \le 42$, so	
produces -7 < -10 which is NOT	$5x \le 35$ (subtracting 7 from both sides) so	
true; this is because if a is to	$x \leq 7$.	
the left of <i>b</i> on a number line,	Note: usually the solution for an inequality in 1 variable is	
then -a is to the right of -b on a	shown on a number line:	
number line. We can adjust for		
this change in order by	-20 -15 -10 -5 0 5 10 15 20	
changing the direction of the	The closed circle indicates that $x = 7$ is part of the solution	
inequality sign. Thus,	set.	

solutions (x, y) which make the inequality true. As before, there will be an infinite number of colutions, but	have $0 > 3 + 0.75(1)$, which is NOT TRUE. This tells us that (1, 0) is NOT a solution, so is NOT in the region where	
be an infinite number of solutions, but this time they can not be shown on a number line, nor stated symbolically (as in x > -1.75). This time the ONLY solution strategy is to graph the boundary condition , $y = -$ 2x + 7.5, a line, and then locate the points (x, y) that make y < -2x + 7.5 true, by shading the half plane that	all solutions to the inequality are located.	
contains the solutions. Note: should the inequality be in standard form, ax + by < c, then it		
will have to be rewritten in slope - intercept format to facilitate graphing. See example 7 to the right.	The shaded region of the graph indicates all colutions of	
	The shaded region of the graph indicates all solutions of the inequality $y > 3 + 0.75x$. Notice that the boundary is shown as a broken line . This indicates that points on the line y = 3 + 0.75x are not included in the solution set.	
	Note: there are symbolic ways to solve linear equations and inequalities in 1 variable. There are only graphical ways to solve linear inequalities in 2 variables.	

Systems of Linear Equations in 2	8. Solve this system graphically.
(or more) Variables are 2 (or more)	2x + y = 5
linear equations which are paired	$\begin{cases} 9x - 3y = 15 \end{cases}$
together to indicate that a common	(9x - 5y = 15)
solution is sought. That is, each	Notice that
linear equation in 2 variables has an	
infinite number of solutions which	2x + y = 5
satisfy the equation (points which lie	
on the line representing the	$\begin{cases} 2x + y = 5\\ 9x - 3y = 15 \end{cases}$ is equivalent to $\begin{cases} y = -2x + 5\\ y = 3x - 5 \end{cases}$
equation), but a system made of 2 of	y = -2x + 5
these linear equations has a solution	Is equivalent to $\int y - 3r - 5$.
only if there is a solution (or many	(y - 3x - 3)
solutions) that makes both of the	
equations true simultaneously (a	We can graph the two lines indicated in the second system
	and find solutions to the system by looking for common
point that lies on both lines). Usually	points. In this case, because the slopes are different there
a system of linear equations	will be only ONE solution, (2, 1)
represents 2 contextual conditions	
that must be satisfied.	NT /
The system may have the format:	5
y = ax + b	+\ /
y = cx + d (both equations in slope-	$+ \setminus /$
intercept format, see <i>Moving Straight</i>	\downarrow \setminus /
Ahead),	↓
Or	
ax + by = c	
dx + ey = f (both equations in	
3	\top
standard format),	$\uparrow/$
Or some combination of these.	\uparrow
	-5
Solving Systems of Linear	
Equations in 2 variables can be	0. Calua this system symbolically
done graphically or symbolically.	9. Solve this system symbolically.
Graphic Solution of	2x + y = 5
Systems — The graphic	9x - 3y = 15
Systems — The graphic method involves producing	$\begin{cases} 2x + y = 5 \\ 9x - 3y = 15 \end{cases}$
method involves producing	
method involves producing straight-line graphs for each	One way to solve this symbolically is to rewrite <i>both</i>
method involves producing straight-line graphs for each equation and then reading	
method involves producing straight-line graphs for each equation and then reading coordinates of intersection	One way to solve this symbolically is to rewrite <i>both</i> equations as equations that start $y = (or x =)$.
method involves producing straight-line graphs for each equation and then reading coordinates of intersection points as the solution(s).	One way to solve this symbolically is to rewrite <i>both</i> equations as equations that start $y = (or x =)$.
method involves producing straight-line graphs for each equation and then reading coordinates of intersection points as the solution(s). Since this method relies on	One way to solve this symbolically is to rewrite <i>both</i> equations as equations that start $y = (or x =)$.
method involves producing straight-line graphs for each equation and then reading coordinates of intersection points as the solution(s). Since this method relies on pictorial representation of the	One way to solve this symbolically is to rewrite <i>both</i> equations as equations that start $y = (or x =)$.
method involves producing straight-line graphs for each equation and then reading coordinates of intersection points as the solution(s). Since this method relies on	One way to solve this symbolically is to rewrite <i>both</i> equations as equations that start $y = (or x =)$.
method involves producing straight-line graphs for each equation and then reading coordinates of intersection points as the solution(s). Since this method relies on pictorial representation of the	One way to solve this symbolically is to rewrite <i>both</i> equations as equations that start $y = (or x =)$.
method involves producing straight-line graphs for each equation and then reading coordinates of intersection points as the solution(s). Since this method relies on pictorial representation of the equations, coordinates of the	One way to solve this symbolically is to rewrite <i>both</i>
method involves producing straight-line graphs for each equation and then reading coordinates of intersection points as the solution(s). Since this method relies on pictorial representation of the equations, coordinates of the intersection point can only be	One way to solve this symbolically is to rewrite <i>both</i> equations as equations that start $y = (or x =)$.
method involves producing straight-line graphs for each equation and then reading coordinates of intersection points as the solution(s). Since this method relies on pictorial representation of the equations, coordinates of the intersection point can only be estimated and may not even	One way to solve this symbolically is to rewrite <i>both</i> equations as equations that start $y = (\text{or } x =)$. $\begin{cases} 2x + y = 5\\ 9x - 3y = 15\\ \text{is equivalent to} \end{cases}$ $\begin{cases} y = -2x + 5\\ y = 3x - 5 \end{cases}$

the linear graphs. Thus it is	
important to check estimated	Now, using Properties of Equality to solve this equation in
solutions in the original	one variable,
equations. If the equations	10 = 5x,
are in standard form then	2 = x.
they must be rewritten in	We still need to find the y-value that corresponds to $x = 2$.
slope-intercept form before	We can do this by substituting $x = 2$ in either of the original
graphing, either by hand or	equations. $2(2) + y = 5$, so $y = 1$. Therefore, the solution is
using a calculator.	(2, 1).
Symbolic Solution	
Strategies fall into 3 types,	10. Solve this system by substitution.
and students learn to	$\int 2x + y = 5$
appraise the symbolic	$\begin{cases} 9x - 3y = 15 \end{cases}$
representations to determine	(9x - 3y = 13)
which strategy will be most	
convenient.	Another way to solve this system is to rewrite <i>only one</i> of
✓ Equivalent Form:	the equations in $y = $ or $x = $ format. Since $2x + y = 5$ has a
When the equations	term with coefficient 1 it is easy to rewrite as $y = 5 - 2x$.
in a system are given	Now we cub ctitute the expression 5 24 for u in the
in $ax + by = c$ form,	Now we substitute the expression 5 – 2x for y in the
they can always be	second equation. 9x - 3(5 - 2x) = 15.
changed to the	9x - 3(3 - 2x) = 15. 9 x - 15 + 6x = 15.
equivalent $y = ax + b$	15x = 30.
form. When the	X = 2.
arithmetic is easy,	As before we need to find the corresponding y-value to
this is a good	complete the solution.
strategy.	2(2) + y = 5, so $y = 1$.
✓ Substitution —A	The solution is $(2, 1)$.
second method of	
solving linear	
systems is useful	11. Solve by using linear combinations.
when one of the	9x - 3y = 15 and
given equations can	6x - 4y = 2.
be easily re-written in	(Note: We indicate that the two equations are a system, for
a form showing one	which common solutions are to be found, by bracketing the
variable as a function	equations together, or by using "and" to link the equations.)
of the other, either y	
= some expression in	9x – 3y = 15 and
x, or $x =$ some	6x - 4y = 2
expression in y.	is equivalent to
✓ Linear Combination	18x - 6y = 30 and
— A third method of	18x - 12y = 6.
solving linear	Notice that this new system has been produced by
systems relies on	multiplying every term in the first equation by 2, and by
two basic principles:	multiplying every term in the second equation by 3. If we
	graphed the first system we would see two lines. If we

 (1) The solutions to any linear equation ax + by = c are identical to the solutions of the equation kax + kby = kc. That is, multiplying both sides of a linear equation by the same (non-zero) number does not change the set of solutions. 	graphed the second system we would see the <i>same</i> two lines. However, the second system has "18x" in both equations. Now, <i>subtracting</i> 18x -12y from $18x - 6y$ and <i>subtracting</i> 6 from 30, we have a new equation, 6y = 24. This has only one variable (because $18x - 18x =0), so we can solve, to get y = 4.As usual we need to find the corresponding x-value. 9x -3(4) = 15$. So $9x = 27$. So $x = 3$. The solution is $(3, 4)$. <i>12. Solve by using linear combinations.</i> 9x - 2y = 15 and 6x + 4y = 2. We could again rewrite these equations so that they both have "18x" and subtract. Or we can focus our attention on the "y terms" and try to eliminate them.
(2) The solution of any system of linear equations is unchanged if one of the equations is replaced by a new equation formed by adding (or subtracting) the two original equations.	9x - 2y = 15 and 6x + 4y = 2 is equivalent to 18x - 4y = 30 and 6x + 4y = 2 Notice that by multiplying only the first equation by 2 we have "4y" in both equations. Actually we have "-4y" in one equation and "4y" in the other. <i>Adding</i> the equations in the new system we have $24x = 32$. This has only one variable (because $-4y + 4y = 0$) so we can solve, to get $x = 4/3$. As before we need the corresponding value of y to complete the solution. 9(4/3) - 2y = 15, so 12 - 2y = 15, so -2y = 3, so y = -3/2.
	13. Solve the system 9x - 3y = 15 and 6x - 2y = 2. If we are not directed to use a particular strategy then we can approach this system in whichever way we prefer. Say we decide to solve both of these equations for y. Then 9x - 3y = 15 is equivalent to -3y = 15 - 9x or $y = -5 + 3x$.

Meanwhile $6x - 2y = 2$ is equivalent to -2y = 2 - 6x, or $y = -1 + 3x$. The new system is $y = -5 + 3x$ and $y = -1 + 3x$. Therefore, $-5 + 3x = -1 + 3x$. Using Properties of Equality on this equation we have -5 = -1. Now, this is never true, no matter what value x takes. Thus we have <i>NO solution for this system</i> . (Notice, had we chosen to graph these we would have noticed that both slopes are 3. The lines are parallel.
There will be no common points.) 14. Solve the system 9x - 3y = 15 and 6x - 2y = 10. Suppose we decide to use the Linear Combinations strategy. Then we might focus on making both equations have the same coefficient for y. We can make both y-terms have a coefficient of -6. An equivalent system is 18x - 6y = 30 and 18x - 6y = 30. Subtracting we have
0 = 0. This is true no matter what value x takes. Thus, there is an <i>infinite number of solutions for this system</i> . (Notice, had we chosen to graph we would have seen that $9x - 3y = 15$ is exactly the same line as $6x - 2y = 10$. All their points are common solutions.)
Note: Every system of linear equations in 2 variables will have either 1 solution, no solution or an infinite number of solutions (corresponding to 2 lines with1 point of intersection, 2 parallel lines with no points of intersection, or 2 identical lines).

Solving Systems of Linear Inequalities	
Solving Systems of Entear inequalities	15. Solve this system of linear inequalities.
The solution to a system of linear <i>equations</i> is	3x + y > 6 and
the intersection of two lines (if they intersect).	4x - 2y < 10.
The solution to a system of distinct, non-disjoint	
linear <i>inequalities</i> is the intersection of two half-	The original system is equivalent to
planes, which contains infinitely many points.	Y > 6 - 3x and $y > -5 + 2x$.

planes, which contains infinitely many points.

In general, there are four regions suggested by a system of linear inequalities such as

$$\begin{cases} y < x \\ y > 2x - 5 \end{cases}$$

These regions are numbered 1—4 in the diagram below. Region 1 contains the solutions to the system, for all of the points satisfy both inequalities. Regions 2 and 3 contain points that satisfy one or the other, but not both of the inequalities. These points are *not* solutions to *the system*, although each point is a solution to one of the inequalities. Region 4 contains points that satisfy neither of the equations. These points are also *not* solutions to the *system*.

These inequalities can each be graphed by first graphing the boundary lines Y = 6 - 3x and y = -5 + 2x. This produces 4 regions of the plane.

We can determine which of these regions contains the solutions by either

- Choosing points which are clearly in each of the regions, and checking these points in the original system of inequalities, to see which point is a solution, and therefore which region contains solutions, or
- Reasoning that we want points which are above (>) the boundary y =6 3x and also above (>) the boundary y = -5 + 2x.

In the case of the above graph we might choose points (0, 7), (0. 0), (-6, 0) and (4, 0) to represent the 4 regions. It is not necessary to choose points on the axes, but these make easy points to work with.

