Use the diagrams to answer the following questions.	
What are the lengths of the legs of the right triangle? \qquad and \qquad	What are the lengths of the legs of the right triangle? \qquad and \qquad What is the length of the hypotenuse?
What is the length of the hypotenuse? \qquad What are the areas of the squares off of the legs? \qquad and \qquad	What is the length of the hypotenuse? \qquad What are the areas of the squares off of the legs? \qquad and \qquad
What is the sum of those two areas? \qquad What is the area of the square off of the hypotenuse?	What is the sum of those two areas? \qquad What is the area of the square off of the hypotenuse?

Explain the relationship between the sum of the areas off of the legs and area off of the hypotenuse?

Do you think all right triangles will have lengths that are integers? Explain. \qquad

To find the square root of a number:

What are the lengths of the shorter sides of the triangle? \qquad and \qquad What is the length of the longest side? \qquad
What are the areas of the squares off of the two shorter sides? \qquad and \qquad
What is the sum of those two areas? \qquad
What is the area of the square off of the longest side? \qquad
If there is no relationship, why do you think that is? \qquad
\qquad

The data below was taken from five right triangles with sides \mathbf{a}, b, and \mathbf{c}. (Side \mathbf{c} is always the longest side.) The area of the square off each side is denoted with a capital letter.
Using what you have discovered, complete the table below.

a	Area of A	b	Area of B	Area of C	c
6	36	8	64	100	$\sqrt{100}=10$
5	25	4	16	41	6.4
9	81	10	100	181	13.5
1	1	2	4	5	2.3
3	9	5.2	27	36	6

$a^{2}+b^{2}=c^{2}$

Bythag Water Demo.mp4

Pythagorean Theorem

Pythagorean Triples

Using what we know about shrinking and stretching we can create more Pythagorean Triples.

Is $\triangle \mathrm{DOG}$ a right triangle?

What is the length of $O G ?$

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 7^{2}+b^{2}=18^{2} \\
& 49+b^{2}=324 \\
& \frac{-49-49}{b^{2}=275} \\
& \sqrt{b^{2}}=\sqrt{275} \\
& b=16.6
\end{aligned}
$$

What Did Dr. Dripp Say to the Bleeding Kid Who Refused to Get Stitches?

Find the missing side length, if possible (some answers are rounded). Cross out the letter next to the correct answer. When you finish, the answer to the title question will remain.

For Exercises i-8, refer to the diagram at the right.

1. $a=6, b=8$
$c=$ \qquad
2. $a=10, b=7$
$c=$ \qquad

$$
\begin{gathered}
a^{2}+b^{2}=c^{2} \\
6^{2}+8^{2}=c^{2} \\
36+64=c^{2} \\
\sqrt{100}=\sqrt{c^{2}} \\
10=c
\end{gathered}
$$

What Did Dr. Dripp Say to the Bleeding Kid Who Refused to Get Stitches?
 Find the missing side length, if possible (some answers are rounded). Cross out the letter next to the correct answer. When you finish, the answer to the title question will remain.

For Exercises i-8, refer to the diagram at the right.

1. $a=6, b=8$
$c=$ \qquad
2. $a=10, b=7$
$c=$ \qquad
3. $a=15, b=15$
$c=$ \qquad
4. $a=10, c=26$
$b=$ \qquad
5. $b=30, c=50$
$a=$ \qquad
6. $a=5, c=12$
$b=$ \qquad

フ. $b=13, c=20$
$a=$ \qquad
7. $a=1.5, b=2$
$c=$ \qquad

Q	3.2 m
山	17.4 cm
	22.6 ft
$\boldsymbol{\sim}$	16 yd
Ш	14.2 in .
5	24.5 ft
m	15 in .
$\boldsymbol{\sim}$	$\begin{aligned} & \text { not } \\ & \text { possible } \end{aligned}$
F	1.3 mi
0	26.7 ft
5	3.6 m
0	1.1 mi
O	16.6 cm
($)$	14.6 in.
4	15 yd

Triangles:
The Pythagorean Theorem

PUNCHLINE • Algebra • Book B ©2006 Marcy Mathworks
16.1

