Right Triangle

How are right triangles labeled?

a and b are the legs. it does nit matter what the order is

Explain the relationship between the sum of the areas off of the legs and area off of the hypotenuse?

Do you think all right triangles will have lengths that are integers? Explain.
How to get a square root:

On the calculators in the classroom, the radical sign is above the x^{2} button. You need to press the $2^{\text {nd }}$ button to access it.

To find the square root of a number:

What are the lengths of the shorter sides of the triangle? \qquad and \qquad
What is the length of the longest side? \qquad
What are the areas of the squares off of the two shorter sides? \qquad and \qquad
What is the sum of those two areas? \qquad
What is the area of the square off of the longest side? \qquad

If there is no relationship, why do you think that is? \qquad
\qquad

The data below was taken from five right triangles with sides a, b, and c . (Side c is always the longest side.) The area of the square off each side is denoted with a capital letter.
Using what you have discovered, complete the table below.

\boldsymbol{a}	Area of A	b	Area of B	Area of C	\boldsymbol{c}
6		8			
5		4			
9		10			
	1		4		
	9			36	

