Additional Practice (continued)

Name

Thinking With Mathematical Models

16. For parts (a)–(c), write an equation and sketch a graph for a line that meets the given conditions. Use one set of axes for all three graphs.

- **a.** A line with slope $-\frac{1}{2}$ and *y*-intercept (0, 3)
- **b.** A line parallel to the line drawn in part (a) with a *y*-intercept greater than 3
- **c.** A line parallel to the line drawn in parts (a) and (b) with a *y*-intercept less than 3
- **d.** What do you notice about the equations and graphs of the three lines?
- **17. a.** Predict how high a stack of 10 cups would be.

Stack of Styrofoam Cups

Number of Cups	1	2	3	4
Height of the Stack of Cups (cm)	7	8	9	10

- **b.** Describe the pattern in words.
- **c.** Describe the pattern with an equation. Let *x* represent the number of cups and *h* represent the height.
- **d.** What does the coefficient of *x* mean in this context? Does it have a unit of measure? Explain.
- **e.** What does the constant term mean in this context? Does it have a unit of measure? Explain.

Investigation 2

_____ Date _____ Class

.

18

Skill: Using Linear Models

For Exercises 1–5, use the graph at the right.

- 1. What earnings will produce \$225 in savings?
- **2.** How much is saved from earnings of \$400?
- **3.** What is the slope of the line in the graph?
- 4. For each increase of \$200 in earnings, what is the increase in savings?
- **5.** Write an equation for the linear function.
- 6. A ride in a cab costs \$0.40 plus \$0.15 per mile.
 - a. Write and graph an equation for the linear function that models traveling *x* miles in the cab.
 - **b.** The cab charges \$0.70 for a ride of how many miles?
 - **c.** How much does the cab charge for a trip of 8 miles?

Investigation

Thinking With Mathematical Models

Class

Date _____

Name ____

Skill: Using Linear Models (continued)

A giraffe was 1 foot tall at birth, 7 feet tall at the age of 4, and $11\frac{1}{2}$ feet tall at the age of 7.

7. Plot the data.

Name ____

- **8.** Draw a line that models the pattern in the data.
- **9.** Write an equation for the linear function.
- 10. Use your function to find the following information.a. the giraffe's height at the age of 5
 - **b.** the age at which the giraffe was 16 feet tall

A hippopotamus weighed 700 pounds at the age of 1, 1,900 pounds at the age of 3, and 2,500 pounds at the age of 4.

- **11.** Plot the data.
- **12.** Draw a line that models the pattern in the data.
- **13.** Write an equation for the linear function.
- **14.** Use your function to predict the following information.
 - **a.** the hippo's weight at the age of 6
 - **b.** the age at which the hippo weighed 4,300 pounds

Class

Thinking With Mathematical Models

Investigation 2

Date _____

Skill: Using Linear Models (continued)

Thinking With Mathematical Models

Class

Horace has a small flock of chickens. He tracks the relationship between the number of hours of sunlight and the total number of eggs he gets in a day. He records his data from different dates in this table.

Date	Feb 1	Apr 1	Jun 1	Jul 1	Sep 1	Oct 1	Dec 1
Number of Eggs	4	14	18	19	14	11	0
Hours of Sunlight	10	12.5	14.5	14.5	13	12	9.5

15. Graph the data. Draw a line that models the pattern in the data.

- 16. Write an equation for the linear function that models the relationship for hours of sunlight, *s*, in terms of the number of eggs collected, *n*.
- **17. a.** Use your equation to predict the number of hours of sunlight that are needed for Horace's flock to produce 20 eggs per day.
 - **b.** Use your equation to predict the number of eggs Horace's flock would produce with 16 hours of sunlight.
- **18.** What do the values of m and b in the equation s = mn + b tell you about the rate of egg production?

Skill: Using Linear Models (continued)

Thinking With Mathematical Models

Date _____ Class

A fisherman recorded the size and weight of the fish he caught on a fishing trip. The lengths are recorded in the table.

Length (in.)	5	6	6.5	7	8	8	9	10	12	15
Weight (oz)	9	11	12	12.5	13	14	15	17	20	25

19. Graph the data. Draw a line that models the pattern in the data.

20. Write an equation for the linear function that models the relationship for the fish weight, w, in terms of fish length, *l*.

21. Use your equation to predict the weight of a fish that measures 4 inches long.

22. Why might predicting the weight of a fish by the measurement of its length not be accurate?

Investigation 2

Name	Date	Class
Skill: Writing Equati	ons of Lines	Investigation 2
• • • • • • • • • • • • • • • • • • • •	Th	inking With Mathematical Models
Write an equation for the line the point with the given slope.	hrough the given points or through	the given
1. (5,7), (6,8)	2. $(-2,3)$; slope = -2	1
3. (1,2), (3,8)	4. $(-2,3)$; slope = 4	
5. (4, 7): slope $=\frac{3}{2}$	6. $(6, -2)$: slope = $-\frac{2}{3}$	4
2		3
7 $(0, 5)$ $(-3, 2)$	8 (8 11) (6 16)	
• (0,5), (-5,2)	U . (0,11), (0,10)	