## Warm Up

Does this data represent a linear relationship?

| -2   | 3 If | so, can y                             | you write | the equa | tion?  | Λ                |
|------|------|---------------------------------------|-----------|----------|--------|------------------|
| V    |      | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |           |          | 2      | ₩ <u>-</u> ½ - 3 |
| 0    | X    | 23                                    | 25        | 27       | 29     |                  |
| -47? | У    | 22                                    | 28        | 34       | 40     |                  |
|      |      | +4                                    | +4        | + (      | \<br>\ |                  |
| -3(  | (23) |                                       | W- 3      | 8x+b     |        |                  |
| -6   | 9    |                                       |           | 1. 2     |        |                  |

#### How can we check if our equation is right?

Does this data represent a linear relationship? If so, can you write the equation?

| X | 23 | 25 | 27 | 29 |  |  |
|---|----|----|----|----|--|--|
| У | 22 | 28 | 34 | 40 |  |  |

Use one of the many solutions we have in the table and see if the equation you have chosen balances.

$$4^{2} 3x - 47$$

$$22^{2} 3(23) - 47$$
This equation is
$$22^{2} 69 - 47$$

$$22^{2} 22$$
CORRECT!
$$22^{2} 22$$
Balances!

#### Rounding?

## Quick Review:

2,34

tentha 2.3

ones 2

4.782

hunaratha 4.78

tenths 4.8

onus 5

6.248

hundreths 6.25

tenths 6.2

ones 6

8.447

8.447

#### Problem 2.3

#### Recap

When finding an equation, it may help to calculate values of the dependent variable for some specific values of the independent variable. Then you can look for a pattern in those calculations. You can use the information given in words, tables of data, and graphs.

- Use what you know about linear equations to work out models for the Tree Top Fun business. Find an equation for each of the linear functions described below.
  - 1. The standard charge per customer at TTF is \$25. Write an equation I = 35 n
  - 2. Each TTF site has operating costs of \$500 per day. Write an equation P= 25n -500 that relates daily profit P to the number n of customers.
  - 3. One TTF site bought a new rope bridge for \$4,500. TTF will make monthly payments of \$350 until the bill is paid. Write an equation for P=4500-350m the unpaid balance B after m monthly payments.

continued on the next page

ested the group admission  $\frac{24}{3}$ 

One operator of a Tree Top Fun franchise suggested the group admission fees in the table below.

|                     |    | 1  | < / | \ / | \ ( | $\sim i$ | $\dot{\mathbf{x}}$ | V.  |
|---------------------|----|----|-----|-----|-----|----------|--------------------|-----|
| Number in Group     | 1  | 2  | 3   | 4   | 5   | 10       | 15                 | 20  |
| Admission (dollars) | 75 | 90 | 105 | 120 | 135 | 210      | 285                | 360 |

1. Explain how you know the relationship between the admission fee for a group and the number of people in the group is linear.

**2.** What are the slope and y-intercept of the graph of the data?  $\sqrt{-15}$  X+ 60

**3.** What equation relates admission fee A to the number n in the group?

The owners of Tree Top Adventures opened a snack bar at one site. The graph below shows the income from snack sales for six different days. What is the equation of the linear model on the graph?



- Suppose you are asked to write an equation of the form y = mx + b to represent a linear function. What is your strategy for each situation?
  - 1. You are given a description of the function in words.
  - **2.** You are given two or more (x, y) values or a table of (x, y) values.
  - **3.** You are given a graph showing points with coordinates.

continued on the next page >

A state mathematics test asked students to find equations for linear functions. Two students, Dana and Chris, gave the answers below.

1. To find an equation for the line with slope -3 hat passes through the point (4, 3), Dana wrote the following steps. Is he correct? Explain.

$$3 = -3(4) + b$$
This means  $b = 15$  and  $y = -3x + 15$ .
$$3 = -12 + b$$

(4,3)

2. To find an equation for the line that passes through points (4, 5) and (6, 9), Chris wrote the following steps. Is she correct? Explain.

$$m = \frac{6-4}{9-5}, \text{ so } y = \frac{1}{2} x + b$$
This means  $5 = \frac{1}{2}(4) + b, b = 3, \text{ and } y = \frac{1}{2} x + 3.$ 

## To write an equation of a line, we need:

4 intercept Slope

# Things to remember:

 Any 2 points on a line can be used to find the slope.

• If a relationship is linear, the slope is the same between all pairs of points.

• Any point on a line is a **solution** for the equation of the line.



The slope is the same no matter which points you choose!

## How do we write the equation of a line if we are just given the slope and one point on the line?

Slope = -1

Line contains the point (-2, 3)

y=mx+b

$$y = \frac{-1}{1}x + b$$

$$\frac{-2}{1=b}$$



### How do we write the equation of a line if we are just given two points?

Line goes through the points (5, 7) and (6, 10)

these are solutions

$$+1 < \frac{5.7}{6.10} > +3$$
  $\frac{\Delta y}{\Delta x} = \frac{3}{1}$ 



$$\int y^{2} 3x - 8$$

Let's look at this again ...

$$x = \frac{12}{12} + \frac{12}{12} +$$

#### **Writing Equations of Lines**

#### All we need are:

•

•

If we are given two points, (5, 1) and (8, 10)

1. Find the slope between the points:

$$\frac{\Delta y}{\Delta x} =$$

2. Substitute the slope into the Slope-Intercept equation:

$$y = \underline{\hspace{1cm}} x + b$$

**3.** We now need to find the value of "b". We know how to solve for a variable, but what makes this difficult is that we have **3** variables at the moment.

Fortunately we have **2 solutions** for this equation and they are the two points on the line! Let's **substitute** in a **point** (x, y) and then **solve** for "b".

Let's try both!

Substitute ( 5 , 1 ) in for x and y:

$$() = 3() + b$$

Substitute (8, 10) in for x and y:

$$( ) = 3( ) + b$$

b =

**4.** Use your slope and y-intercept to write the equation.