Solve for x :

$$
\begin{aligned}
& \begin{array}{l}
5-7(x-3)=4-2 x \\
5-7 x+21=4-2 x \\
26-7 x=4-2 x
\end{array} \quad \sum \begin{array}{c}
\text { Distributive } \\
\text { Property }
\end{array} \\
& \begin{array}{l}
\text { combined } \\
\text { Like Terms }
\end{array} \\
& 26=4+5 x \\
& \frac{-4 x}{4}=4 \\
& \frac{22}{5}=\frac{5 x}{5} \\
& \frac{22}{5}=x \quad \begin{array}{l}
\text { Leave answer as } \\
\text { improper fraction }
\end{array}
\end{aligned}
$$

2.2 Up and Down the Staircase

Linear functions are often used as models for patterns in data plots. In Moving Straight Ahead, you learned several facts about equations representing linear functions.

- Any linear function can be expressed by an equation in the form $y=m x+b$.
- The value of the coefficient m tells the rate at which the values of y increase (or decrease) as the values of x increase by 1 . Since m tells you the change in y for every one-unit change in x, it can also be called the unit rate. A unit rate is a rate in which the second number is 1 , or 1 of a quantity.

- The value of m also tells the steepness and direction (upward or downward) of the graph of the function.
- The value of b tells the point at which the graph of the function crosses the y-axis. That point has coordinates $(0, b)$ and is called the y-intercept.
In any problem that calls for a linear model, the goal is to find the values of m and b for an equation with a graph that fits the data pattern well. To measure the steepness of a linear equation graph, it helps to imagine a staircase that lies underneath the line.

The steepness of the line is the ratio of rise to run. This ratio is the slope of the line.

$$
\begin{aligned}
& \text { slope }=\frac{\begin{array}{c}
\text { veddown } \\
\text { vertical change } \\
\text { horizontal change } \\
\text { Kktright }
\end{array}}{\text { ven }}=\frac{\text { change in } y}{\text { change in } X}=\frac{\Delta y}{\Delta x} \\
& \text { Slope }=\frac{\Delta y}{\Delta x}
\end{aligned}
$$

Linear equation basics:

Slope Intercept Form:

$$
\begin{aligned}
& y= m x+b^{2} \\
& \hat{S}_{\text {slope }}=\frac{\Delta y}{\Delta x} \\
&(\text { measure of steepness })
\end{aligned}
$$

y-intercept: the value of y when $x=0$

$$
(0, b)
$$

$$
y=m x+b
$$

Let $x=0 \quad y=m(0)+b$

$$
y=b
$$

When $x=0, y=b$ which is they -Intercept

Slope Calculation: From a graph, a table, or 2 points.

$$
\begin{gathered}
\text { slope }=\frac{\Delta y}{\Delta x} \\
\frac{\Delta y}{\Delta x}=\frac{-4}{5}
\end{gathered}
$$

$$
\text { Slope }=\frac{\Delta y}{\Delta x}=\frac{8}{2}=4
$$

$$
\begin{array}{r}
(2,7) \text { and }(5,37) \\
+3<\begin{array}{l}
2,7 \\
5,37
\end{array}>+30
\end{array}
$$

We can "stack" the coordinate pairs and find the changes like we would in a table.

$$
\text { Slope }=\frac{\Delta y}{\Delta x}=\frac{30}{3}=10
$$

Does order matter?

$$
-3\left\langle\begin{array}{l}
5,37 \\
2,7
\end{array}>-30 \quad \frac{\Delta y}{\Delta x}=\frac{-30}{-3}=10\right.
$$

Same slope No! as above

Practice
Start with the left hand
(1)

(2)
 point and travel vertically. Then horizontally to the second point.
slope $=\frac{\Delta y}{\Delta x}=\frac{-6}{3}=\frac{-2}{1}$

Practice

$$
\begin{aligned}
& \text { (7) }(2,1) ;(5,3) \quad \text { slope }=\frac{\Delta y}{\Delta x}=\frac{2}{3} \\
& +3\left\langle\begin{array}{l}
2,1 \\
5,3
\end{array}\right\rangle+2
\end{aligned}
$$

(8) $(8,3) ;(2,5)$
The order in which

$$
\begin{aligned}
-6 & \left\langle\begin{array}{l}
8,3 \\
2,5+2 \\
\text { OR }
\end{array} \begin{array}{l}
2,5 \\
8,3
\end{array}\right\rangle-2 \\
\frac{\Delta y}{\Delta x}=\frac{2}{-6}=-\frac{1}{3} & \frac{\Delta y}{\Delta x}=\frac{-2}{6}=-\frac{1}{3}
\end{aligned}
$$ you "stack" your coordinate pairs does not matter. The slope is always the same.

What Do You Call a Duck That Steald 8 y

For the first six exercises, find the slope of the line $\overleftrightarrow{A B}$. Fo th all y exercises, find th
 below that contains a correct answer. When you finish, print the letturs from the remaining boxes in the spaces at the bottom of the page.
(1)

(2)

(3)

(4)

(5)

(6)

(11) $(9,2) ;(3,-1)$
(15) $(-4,-8) ;(-2,0)$
(8) $(8,3) ;(2,5)$
(12) $(-5,8) ;(-4,2)$
(16) $(-3,-3) ;(0,0)$
(9) $(1,-4) ;(6,-2)$
(13) $(0,-1) ;(4,-7)$
(17) $(2,5) ;(9,1)$
(10) $(-3,1) ;(-7,4)$
(14) $(1,-1) ;(-2,-6)$
(18) $(0,0) ;(-2,7)$

DU 0	AB -6	CK $-\frac{3}{5}$	ST $-\frac{4}{7}$	$\begin{gathered} \text { AR } \\ 9 \end{gathered}$	IG $\frac{1}{2}$	AT $-\frac{7}{2}$	OB $-\frac{7}{6}$	IG $\frac{4}{3}$	ET $\frac{2}{3}$	BE $-\frac{5}{4}$	ST $\frac{5}{3}$
CA $\frac{2}{5}$	$\begin{aligned} & \text { RD } \\ & \frac{1}{6} \end{aligned}$	RI $-\frac{1}{4}$	$\begin{aligned} & \mathrm{CH} \\ & -2 \end{aligned}$	$\begin{aligned} & \text { UC } \\ & -8 \end{aligned}$	RI $-\frac{3}{2}$	$\begin{gathered} \mathrm{ME} \\ 1 \end{gathered}$	$A Q$ $-\frac{1}{3}$	UA $-\frac{3}{4}$	KY $\frac{8}{5}$	$\begin{gathered} \text { ET } \\ 4 \end{gathered}$	CK 3

OBJECTIVE 5-h: To find the slope of a line given two points on the line (not using the graph).

