
Warm Up

Each part of an equation tells the "story" about a situation.

Using the equation we got last week for attendance at Get Reel, tell what all the variables and numbers mean in the context of the problem.

$$5lope = 2 = \Delta y = \frac{4}{3x} = \frac{4}{170} \operatorname{incuaxin}_{prob. of rain}$$

What do the parts of the equation tell us about the attendance at Big Fun?

2.5 Recap - We have lots of questions to answer.

- Use your functions from Question A to answer these questions. Show your calculations and explain your reasoning.
 1. Suppose there is a 50% probability of rain this Saturday. What is the expected attendance at each attraction?
 - **2.** Suppose 475 people visited Big Fun one Saturday. Estimate the probability of rain on that day.
 - **3.** What probability of rain gives a predicted Saturday attendance of at least 360 people at Get Reel?
 - **4.** Is there a probability of rain for which the predicted attendance is the same at both attractions?
 - **5.** For what probability of rain is attendance at Big Fun likely to be greater than at Get Reel?
 - **6.** For what probability of rain is attendance at Big Fun likely to be less than at Get Reel?

Our equations can be used to answer each of these questions! That's why we make them!

1. Suppose there is a 50% probability of rain this Saturday. What is the expected attendance at each attraction?

 $A_F = -7.5p + 1000$ $A_R = 2p + 300$ $A_F = -7.5(50) + 1000$ $A_R = 2(50) + 300$ $A_F = -375 + 1000$ $A_R = 100 + 300$ $A_F = 625$ 400 $A_R = 100 + 3000$ $A_F = 625$ 400 $A_F = 625$ $A_F = 625$ <

2. Suppose 475 people visited Big Fun one Saturday. Estimate the probability of rain on that day.

$$A_{F} = -7.5p + 1000$$

$$475 = -7.5p + 1000$$

$$-1000 - 1000$$

$$-525 = -7.5p$$

$$-7.5 - 7.5$$

$$-7.5 - 7.5$$

$$-7.5 - 7.5$$

$$-7.5 - 7.5$$

$$-7.5 - 7.5$$

$$-7.5 - 7.5$$

$$-7.5 - 7.5 - 7.5$$

$$-7.5 - 7.5 - 7.5$$

$$-7.5 - 7.5 - 7.5 - 7.5$$

3. What probability of rain gives a predicted Saturday attendance of at least 360 people at Get Reel?

$$A_{R} = 2p + 300$$

$$360 = 2p + 300$$

$$-300 - 300$$

$$\frac{60}{2} 2p$$

$$2 - 2$$

$$30^{7} 0 \text{ prob. of}$$

$$30 = p$$

$$30^{7} 0 \text{ prob. of}$$

$$30 = p$$

$$44 \text{ rain if } 360 \text{ people}$$

$$a \text{ fund}$$

4. Is there a probability of rain for which the predicted attendance is the same at both attractions?

$$A_{F} = -7.5p + 1000 \qquad A_{R} = 2p + 300$$

$$-7.5p + 1000 = 2p + 300$$

$$-1000 - 1000$$

$$-7.5p = 2p - 700$$

$$-2p - 2p$$

$$-9.5p = -700$$

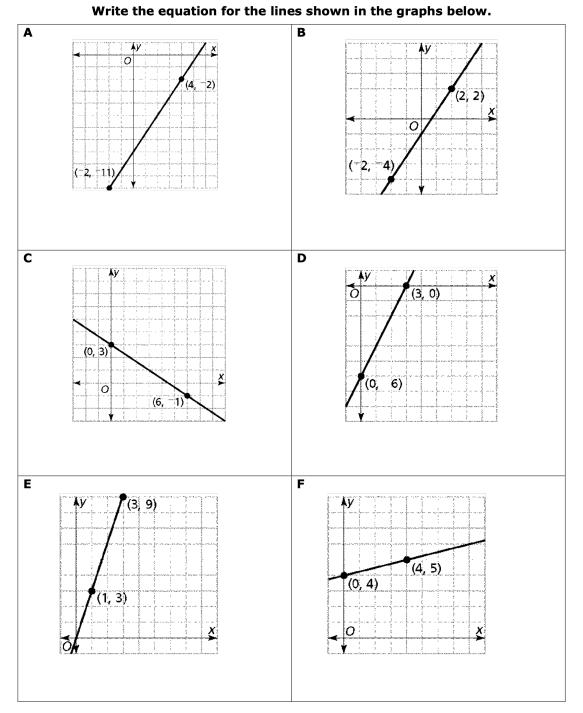
$$-9.5p = -700$$

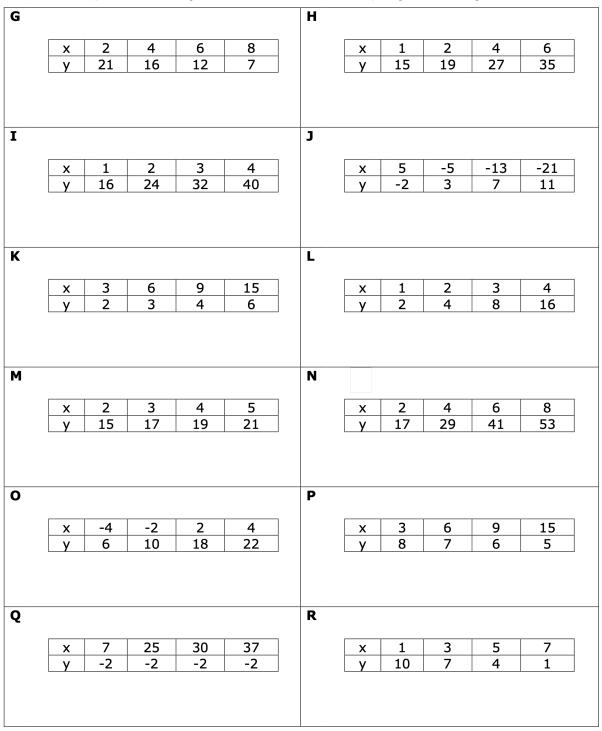
$$arc - bre same$$

$$r = 73.7$$

5. For what probability of rain is attendance at Big Fun likely to be greater than at Get Reel?

When the probability of rain is < 73.7%


6. For what probability of rain is attendance at Big Fun likely to be less than at Get Reel?


Finish up the packet

Algebra 8 TWMM Review

Algebra 8 TWMM Review

Determine whether the relationship between x and y is linear or not. If it is linear, write the equation. If it is not linear, explain how you know.

Algebra 8 TWMM Review

Write the equation of the line given the following conditions:

S	passes through the points (2, 7) and (6, 15)	T with slope -2 that passes through the point (3, -9)
U	passes through the points	V with slope $\frac{3}{2}$ that	
	(2, -9) and (-2, 3)	passes through the point (–2, 0)
W	passes through the points (4, 1) and (-2, 4)	X with slope $\frac{2}{3}$ that passes through the point (6, 2)	2)
Y	passes through the points (2, 1) and (6, 9)	Z with slope -4 that passes through the point (-7, 5)
а	with slope $=\frac{1}{2}$ that passes through the point (-10, 7)	b passes through the points (2, -11) and (-5, 10)	
С	passes through the points (8, 2) and (-2, 7)	d passes through the points (-2, 2) and (3, -2)	

Homework

Finish Review Packet