\qquad Date \qquad
Transformations and Congruence
We will be using $\Delta \mathrm{ABC}$ as our Preimage for all of the following problems.

1. Using the Pythagorean Theorem, calculate the lengths of each side of $\triangle \mathrm{ABC}$. Round your answers to the nearest tenth. Show work below.

$$
\begin{aligned}
& A B=3.2 u . 1^{2}+3^{2}=c^{2} \\
& 1+9=c^{2} \\
& 10=c^{2} \\
& \sqrt{10}=c \\
& B C=4.5 u . \\
& 2^{2}+4^{2}=c^{2} \\
& 4+16=c^{2} \\
& 20=c^{2} \\
& \sqrt{20}=c \\
& \\
& A C=5.1 u . 1^{2}+5^{2}=c^{2} \\
& 1+29=c^{2} \\
& 26=c^{2} \\
& \sqrt{26}=c
\end{aligned}
$$

$A B=3.2$ units
2. Calculate the slope for each side of $\triangle A B C$.

$$
\begin{aligned}
& \text { Slope } A B=3 / 1=3 \\
& \text { Slope } B C=-2 / 4=-\frac{1}{2} \\
& \text { Slope } A C=1 / 5
\end{aligned}
$$

For each of the following questions, graph the transformation and then answer the questions.
3. Translate $\Delta \mathrm{ABC}$ following the rule $(x, y) \rightarrow(x-2, y-3)$

Using the Pythagorean Theorem, calculate the length of side $A^{\prime} B^{\prime}$. Round your answer to the nearest tenth.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
1^{2}+3^{2} & =c^{2} \\
10 & =c^{2} \\
\sqrt{10} & =c
\end{aligned}
$$

Calculate the slope for each side of $\Delta A^{\prime} B^{\prime} C^{\prime}$.
Slope $A^{\prime} B^{\prime}=3 / 1=3$
Slope $B^{\prime} C^{\prime}=-2 / t=-\frac{1}{2}$
$\overline{A^{\prime} B^{\prime}}=3.2$ units

Slope $A^{\prime} C^{\prime}=1 / 5$
How do the length of $A^{\prime} B^{\prime}$ and the slopes of the sides compare to those of $\triangle A B C^{\prime}$? - The length of $A^{\prime} B^{\prime}$ is the same as the length of $A B$. - The slopes of the sides of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are equal to the slopes of the correcpendling sickies of $\triangle A B C$.
4. Reflect $\triangle \mathrm{ABC}$ across the line $\mathrm{y}=-1$.

Using the Pythagorean Theorem, calculate the length of side $A^{\prime} B^{\prime}$. Round your answer to the nearest tenth.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
1^{2}+3^{2} & =c^{2} \\
1+9 & =c^{2} \\
10 & =c^{2} \\
\sqrt{10} & =c
\end{aligned} \quad \overline{A^{\prime} B^{1}}=3.2 \text { visits }
$$

Calculate the slope for each side of $\Delta A^{\prime} B^{\prime} C^{\prime}$.
Slope $A^{\prime} B^{\prime}=-3 / 1$
Slope $B^{\prime} C^{\prime}=2 / 4$
Slope $A^{\prime} C^{\prime}=-1 / 5$

How do the length of $A^{\prime} B^{\prime}$ and the slopes of the sides compare to those of $\triangle A B C^{\prime}$?

- The length of $A^{\prime} B^{\prime}$ is the same as the length of $A B$.
- The slopes of the sides of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are not equal to the slopes of the corresponding sides of $\triangle A B C$, $B U T$ the absolute values of corresponding sides ARE equal.

5. Rotate $\triangle \mathrm{ABC} 90^{\circ}$ clockwise around the point $(0,0)$.

Using the Pythagorean Theorem, calculate the length of side $A^{\prime} B^{\prime}$. Round your answer to the nearest tenth.

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
1^{2}+3^{2} & =C^{2} \\
1+9 & =c^{2} \\
10 & =C^{2} \\
\sqrt{10} & =C
\end{aligned} \quad \overline{A^{1} B^{1}}=3.2 \text { units }
$$

Calculate the slope for each side of $\Delta A^{\prime} B^{\prime} C^{\prime}$.

$$
\begin{aligned}
& \text { Slope } A^{\prime} B^{\prime}=-1 / 3 \\
& \text { Slope } B^{\prime} C^{\prime}=4 / 2=2 \\
& \text { Slope } A^{\prime} C^{\prime}=-1 / 5
\end{aligned}
$$

How do the length of $A^{\prime} B^{\prime}$ and the slopes of the sides compare to those of $\triangle A B C^{\prime}$?

- The length of $A^{\prime} B^{\prime}$ is the same as the length of $A B$.
- The slopes of the sides of $\triangle A^{\prime} B^{\prime} C^{\prime}$ are not equal to the slopes of the corresponding sides of $\triangle A B C$.

6. Dilate $\triangle \mathrm{ABC}$ by a factor of two from the origin (0,0).

Using the Pythagorean Theorem, calculate the length of side $A^{\prime} B^{\prime}$. Round your answer to the nearest tenth.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& 1+3^{2}=c^{2} \\
& 10=c^{2} \\
& \sqrt{10}=c
\end{aligned} \quad A^{3} B^{3}=3.2 \text { unis }
$$

Calculate the slope for each side of $\Delta A^{\prime} B^{\prime} C^{\prime}$.

$$
\begin{aligned}
& \text { Slope } A^{\prime} B^{\prime}=\frac{6}{2}=3 \\
& \text { Slope } B^{\prime} C^{\prime}=\frac{-4}{8}=-\frac{1}{2} \\
& \text { Slope } A^{\prime} C^{\prime}=\frac{2}{10}=\frac{1}{5}
\end{aligned}
$$

How do the length of $A^{\prime} B^{\prime}$ and the slopes of the sides compare to those of $\triangle A B C^{\prime}$?

- The length of $A^{\prime} B^{\prime}$ is not the same as the length of $A B$. It is twice
- The slopes of all correspondingsides are equal.

7. For which transformations ae the following statements true? Check the appropriate boxes.

