\qquad
\qquad
\qquad

Dilation - Notes

A dilation is a transformation that produces an image that is the same \qquad as the original but a \qquad size.

Rules for Dilations:

- Dilations are centered around the origin $(0,0)$ unless otherwise stated.
- The image and the preimage are \qquad .
- Dilations involve a \qquad factor.

Scale Factors:

- Scale factor is: $\frac{\text { image length }}{\text { pre-image length }}$ which is a \qquad .
- If the scale factor is greater than 1 , the figure becomes \qquad .
- If the scale factor is between 0 and 1 , the figure becomes

Example 1: How can we calculate the scale factor?

Let's compare the lengths of the base of each triangle:
$\frac{\text { image length }}{\text { pre-image length }}=\square=$

Let's look at what is happening to each point that is dilated:
$(1,1) \rightarrow(2,2)$
$(2,3) \rightarrow(4,6)$
$(3,1) \rightarrow(6,2)$

The rule for dilations is:

$$
(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{fx}, \mathrm{fy}) \text { where } \mathrm{f} \text { represents the }
$$

\qquad

If the scale factor is 3 , how would you write the rule?

$$
(x, y) \rightarrow(\quad, \quad)
$$

Example 2:

Triangle $A B C$ has vertices $A(0,2), B(4,4)$, and $C(-1,4)$. What are the vertices of its image with a scale factor of 4?

Example 3:

Quadrilateral PQRS has vertices $P(-2,4), Q(6,4), R(6,-2)$, and $S(-2,-2)$. It is dilated by a scale factor of $1 / 2$.
a. What are the coordinates of the image (after dilation)? Graph them. $P^{\prime}(, \quad) \quad Q^{\prime}(, \quad) \quad R^{\prime}(, \quad) \quad S^{\prime}(, \quad)$

b. Demonstrate these quadrilaterals are similar by comparing the ratios of the lengths.
$\frac{P^{\prime} Q^{\prime}}{P Q}=$

$$
\frac{\mathrm{Q}^{\prime} \mathrm{R}^{\prime}}{\mathrm{QR}}=
$$

$$
\frac{\mathrm{R}^{\prime} \mathrm{S}^{\prime}}{\mathrm{RS}}=
$$

$$
\frac{S^{\prime} \mathrm{P}^{\prime}}{S P}=
$$

c. What do you notice about the angle measurements of the two figures?

Example 4:

If the scale factor is $\frac{5}{2}$, how would you write the general rule? Is this an enlargement or a reduction?

Example 5:

Quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is a dilation of quadrilateral $A B C D$. Find the scale factor. Classify the dilation as an enlargement or a reduction.

Example 6:

$\Delta X Y Z$ is graphed below. Draw and label $\Delta X^{\prime} Y^{\prime} Z^{\prime}$ after a dilation with scale factor of two.

