Warm Up

Are these enlarged or reduced?

What is the scale factor?

compare $(0,2)$ to $(0,4)$
$(x, y) \rightarrow(f x, f y)$
$\frac{\text { Image king? }}{\text { Damage neth }}=\frac{2}{4}=\frac{1}{2}$

Scale factor $=2$ Enlarged

Scale factor $=0.5$
Reduced

Practice finding the scale factor: $\frac{1 \text { mage, }}{\text { Presage }}$

Let's compar how Has the far C and C^{\prime}
ak from the origin pane mark)

$$
\text { Factor }=\frac{4}{2}=2
$$

$$
\text { Factor }=\frac{2}{4}=\frac{1}{2}
$$

How to find the point of dilation?
We know that corresponding points of the preimage and image are in a line coming from the point of dilation

By drawing lines that conrecteach pair of points we can see where they intersect.
 Point of dilation is the origin, $(0,0)$.

Point of dilation here is $(-2,-2)$.

are from the origin uniess otnerwise notea.

1. Dilation of 2.5

2. Dilation of 1.5

3. Dilation of $1 / 4$

4. Dilation of 0.5

5. Dilation of 0.5

6. Dilation of 1.5

Write a rule to describe each transformation. $(x, y) \rightarrow(f x, f y)$
7.

9.

$$
(x, y) \rightarrow(.25 x, .25 y)
$$

11.

10.

12.

$$
(x, y) \rightarrow(.25 x, .25 y)
$$

Write a rule to describe each transformation.

14. $V(-1,-2), K(-1,3), Y(1,0)$ to $V^{\prime}(-1.5,-3), K^{\prime}(-1.5,4.5), Y^{\prime}(1.5,0)$ $(\mathrm{x}, \mathrm{y}) \longrightarrow(1.5 \mathrm{x}, 1.5 \mathrm{y})$
15. $K(-1,-2), U(-2,2), V(2,2), Q(2,-1)$ to $K^{\prime}(-2,-4), U^{\prime}(-4,4), V^{\prime}(4,4), Q^{\prime}(4,-2)$ $(x, y) \longrightarrow(2 x, 2 y)$
16. $\mathrm{N}(-4,1), \mathrm{T}(-5,3), \mathrm{J}(-4,3), \mathrm{C}(-1,0)$ to $\mathrm{N}^{\prime}(-1,0.25), \mathrm{T}^{\prime}(-1.25,0.75), \mathrm{J}^{\prime}(-1,0.75)$, $(x, y) \longrightarrow(.25 x, .25 y)$ $\mathrm{C}^{\prime}(-0.25,0)$
17. $\mathrm{K}(-1,0), \mathrm{N}(-2,2), \mathrm{H}(3,3), \mathrm{T}(3,-2)$ to $\mathrm{K}^{\prime}(-1.5,0), \mathrm{N}^{\prime}(-3,3), \mathrm{H}^{\prime}(4.5,4.5)$, $(\mathrm{x}, \mathrm{y}) \longrightarrow(1.5 \mathrm{x}, 1.5 \mathrm{y}) \quad \mathrm{T}^{\prime}(4.5,-3)$

Write the coordinates of the vertices after the given transformation.
18. Dilation of 4
$\mathrm{N}(0,1), \mathrm{O}(1,1), \mathrm{P}(0,8)$
$N^{\prime}(0,4), O^{\prime}(4,4), P^{\prime}(0,32)$
20. Dilation of $1 / 2$
$U(3,2), C(4,4), E(5,2)$
$U^{\prime}(1.5,1), C^{\prime}(2,2), E^{\prime}(2.5,1)$
22. Dilation of $1 / 4$
$W(-4,-5), X(-5,-1), T(-3,0)$
$W^{\prime}(-1,-1.25), X^{\prime}(-1.25,-.25), T^{\prime}(-.75,0)$
24. Dilation of 3
$Q(-3,-3), M(0,-1), H(1,-3)$
$Q^{\prime}(-9,-9), M^{\prime}(0,-3), H^{\prime}(3,-9)$
19. Dilation of 1.5
$V(-2,-2), I(1,2), F(2,0)$
$V^{\prime}(-3,-3), I^{\prime}(1.5,3), F^{\prime}(3,0)$
21. Dilation of 2
$H(-1,-2), A(-2,2), W(2,2)$
$H^{\prime}(-2,-4), A^{\prime}(-4,4), W^{\prime}(4,4)$
23. Dilation of 5

$$
Q(-3,-3), M(0,-1), H(1,-3)
$$

$Q^{\prime}(-15,-15), M^{\prime}(0,-5), H^{\prime}(5,-15)$
25. Dilation of $5 / 2$
$\mathrm{C}(-1,-2), \mathrm{V}(-2,2), \mathrm{N}(2,0)$
$C^{\prime}(-2.5,-5), V^{\prime}(-5,5), N^{\prime}(5,0)$
\qquad
\qquad Date \qquad

Transformations and Congruence

We will be using $\triangle A B C$ as our Preimage for all of the following problems.

1. Using the Pythagorean Theorem, calculate the lengths of each side of $\triangle \mathrm{ABC}$. Round your answers to the nearest tenth. Show work below.
$A B=$

$A C=$
$A B=$ $B C=$ $A C=$
2. Calculate the slope for each side of $\triangle \mathrm{ABC}$.

Slope $A B=$

Slope BC=

Slope AC =

For each of the following questions, graph the transformation and then answer the questions.

3. Translate $\triangle \mathrm{ABC}$ following the rule $(x, y) \rightarrow(x-2, y-3)$

Using the Pythagorean Theorem, calculate the length of side $A^{\prime} B^{\prime}$. Round your answer to the nearest tenth.

Slope $B^{\prime} C^{\prime}=$

Slope $A^{\prime} C^{\prime}=$

How do the length of $A^{\prime} B^{\prime}$ and the slopes of the sides compare to those of $\triangle A B C^{\prime}$?
4. Reflect $\Delta \mathrm{ABC}$ across the line $\mathrm{y}=\mathbf{- 1}$.

Using the Pythagorean Theorem, calculate the length of side $A^{\prime} B^{\prime}$. Round your answer to the nearest tenth.

Calculate the slope for each side of $\Delta A^{\prime} B^{\prime} C^{\prime}$.

Slope $A^{\prime} B^{\prime}=$

Slope $B^{\prime} C^{\prime}=$

Slope $A^{\prime} C^{\prime}=$

How do the length of $A^{\prime} B^{\prime}$ and the slopes of the sides compare to those of $\triangle A B C^{\prime}$?
5. Rotate $\triangle \mathrm{ABC} 90^{\circ}$ clockwise around the point $(0,0)$.

Using the Pythagorean Theorem, calculate the length of side $A^{\prime} B^{\prime}$. Round your answer to the nearest tenth.

Calculate the slope for each side of $\Delta A^{\prime} B^{\prime} C^{\prime}$.

Slope $A^{\prime} B^{\prime}=$
Slope $B^{\prime} C^{\prime}=$

Slope $A^{\prime} C^{\prime}=$

How do the length of $A^{\prime} B^{\prime}$ and the slopes of the sides compare to those of $\triangle A B C^{\prime}$?
6. Dilate $\triangle \mathrm{ABC}$ by a factor of two from the origin $(0,0)$.

Using the Pythagorean Theorem, calculate the length of side $A^{\prime} B^{\prime}$. Round your answer to the nearest tenth.

Calculate the slope for each side of $\Delta A^{\prime} B^{\prime} C^{\prime}$.

Slope $A^{\prime} B^{\prime}=$

Slope $B^{\prime} C^{\prime}=$

Slope $A^{\prime} C^{\prime}=$

How do the length of $A^{\prime} B^{\prime}$ and the slopes of the sides compare to those of $\triangle A B C^{\prime}$?
7. For which transformations ae the following statements true? Check the appropriate boxes.

Corresponding sides of the Preimage and				
Image are parallel.				

