Warm Up

If a figure is reflected across the line $x=1$, would the image be

SIMILAR or CONGRUENT
to the pre-image?
How do you know?
Where would point $(5,3)$ go?

\qquad

Reflections of Shapes

Date \qquad Period \qquad
Graph the image of the figure using the transformation given.

1) reflection across the x-axis

2) reflection across $y=1$

3) reflection across the x-axis

$$
T(2,2), C(2,5), Z(5,4), F(5,0)
$$

2) reflection across $y=3$

4) reflection across the x-axis

6) reflection across $y=-2$
$H(-1,-5), M(-1,-4), B(1,-2), C(3,-3)$

Find the coordinates of the vertices of each figure after the given transformation.
7) reflection across the x-axis

$$
\begin{aligned}
& K(1,-1), N(4,0), Q(4,-4) \\
& N^{\prime}(4,0), Q^{\prime}(4,4), K^{\prime}(1,1)
\end{aligned}
$$

9) reflection across $x=3$
$F(2,2), W(2,5), K(3,2)$

$$
W^{\prime}(4,5), K^{\prime}(3,2), F^{\prime}(4,2)
$$

Write a rule to describe each transformation.

11)

reflection across $x=-2$
13)

reflection across $x=-2$
8) reflection across $y=-1$

$$
\begin{aligned}
& R(-3,-5), N(-4,0), V(-2,-1), E(0,-4) \\
& \quad N^{\prime}(-4,-2), V^{\prime}(-2,-1), E^{\prime}(0,2), R^{\prime}(-3,3)
\end{aligned}
$$

10) reflection across $x=-1$
$V(-3,-1), Z(-3,2), G(-1,3), M(1,1)$
$Z^{\prime}(1,2), G^{\prime}(-1,3), M^{\prime}(-3,1), V^{\prime}(1,-1)$
11)

reflection across the y-axis
14)

Rotations

- iney Idea

Rotations

A rotation, or turn, is a transformation in which a figure is rotated about a point called the center of rotation. The number of degrees a figure rotates is the angle of rotation.

In a rotation, the original figure and its image are congruent.

Rules for Rotation:

- Every point of the Image is rotated around the \qquad center of rotation
- Each point in the Image is rotated
\qquad the same number of degrees in the same direction
\qquad
- Figures can be rotated \qquad clockwise or
\qquad clockwise.

- The image and the preimage are \qquad congruent

How to label Quadrants:

To rotate an object, we need to know:

1. The point we are rotating around
2. The direction we are rotating
3. The number of degrees we are rotating

How to do it yourself:

Rotate 90° clockwise around the origin.

Write down the coordinates of the "new" figure as it looks. $(3,-1),(3,-4),(1,-4)$

3 Turn your paper back and plot the points.

How to a draw rotated object

- Rotate the paper with the pre-image plotted the specified number of degrees in the correct direction.
- Write down the new coordinates of the "image".
- Rotate the paper back to the original orientation.
- Plot the coordinates of the image.

Rotate 90° counter clockwise around the origin.

$$
\begin{aligned}
& A(3,5) \longrightarrow A^{\prime}(-5,3) \\
& B(1,2) \longrightarrow B^{\prime}(-2,1) \\
& C(4,3) \longrightarrow C^{\prime}(-3,4)
\end{aligned}
$$

Rotate 180° counter clockwise around the origin.

$$
\begin{aligned}
& A(3,5) \longrightarrow A^{\prime}(-3,-5) \\
& B(1,2) \longrightarrow B^{\prime}(-1,-2) \\
& C(4,3) \longrightarrow C^{\prime}(-4,-3)
\end{aligned}
$$

Example \#2: rotate the given shape
I rotation 180° about the origin

Why do you think there was no direction given for the rotation?
180° in either direction will get you to the same place.

Example \#3: rotate the given shape
1 rotation 90° clockwise about the origin

Example \#4: write the rotation that must have occurred

$$
180^{\circ} \text { either direction }
$$

Example \#5: write the TWO rotations that could have occurred

$$
90^{\circ} \text { counter clockwise }
$$

\qquad

Rotations of Shapes

Date \qquad Period

Graph the image of the figure using the transformation given.

3) rotation 90° clockwise about the origin

5) rotation 90° clockwise about the origin $U(1,-2), W(0,2), K(3,2), G(3,-3)$

2) rotation 90° counterclockwise about the
origin

4) rotation 180° about the origin

6) rotation 180° about the origin

$$
V(2,0), S(1,3), G(5,0)
$$

Find the coordinates of the vertices of each figure after the given transformation.
7) rotation 180° about the origin $Z(-1,-5), K(-1,0), C(1,1), N(3,-2)$
9) rotation 90° clockwise about the origin $S(1,-4), W(1,0), J(3,-4)$

Write a rule to describe each transformation.

11)

12)

14)

Homework

Finish classwork

