Warm Up

If a figure is reflected across the line x = 1, would the image be

SIMILAR or CONGRUENT

to the pre-image?

How do you know?

Where would point (5,3) go?

(-3,3)

(5,3)

Reflections of Shapes

Graph the image of the figure using the transformation given.

1) reflection across the x-axis

2) reflection across y = 3

3) reflection across y = 1

4) reflection across the x-axis

5) reflection across the x-axis T(2, 2), C(2, 5), Z(5, 4), F(5, 0)

6) reflection across y = -2H(-1, -5), M(-1, -4), B(1, -2), C(3, -3)

Find the coordinates of the vertices of each figure after the given transformation.

7) reflection across the x-axis
$$K(1, -1)$$
, $N(4, 0)$, $Q(4, -4)$

8) reflection across
$$y = -1$$

 $R(-3, -5)$, $N(-4, 0)$, $V(-2, -1)$, $E(0, -4)$

$$N'(-4, -2), V'(-2, -1), E'(0, 2), R'(-3, 3)$$

9) reflection across
$$x = 3$$

 $F(2, 2), W(2, 5), K(3, 2)$

10) reflection across
$$x = -1$$

 $V(-3, -1), Z(-3, 2), G(-1, 3), M(1, 1)$

$$Z'(1, 2), G'(-1, 3), M'(-3, 1), V'(1, -1)$$

Write a rule to describe each transformation.

11)

reflection across x = -2

12)

reflection across the y-axis

13)

reflection across x = -2

14)

reflection across x = 2

Rotations

Rotations

A **rotation**, or *turn*, is a transformation in which a figure is rotated about a point called the **center of rotation**. The number of degrees a figure rotates is the **angle of rotation**.

Rules for Rotation:

•	Every point of the Image is rotated around the	center
	of rotation.	

How to label Quadrants:

To rotate an object, we need to know:

- 1. The point we are rotating around
- 2. The direction we are rotating
- 3. The number of degrees we are rotating

How to do it yourself:

Rotate 90° clockwise around the origin.

Write down the coordinates of the "new" figure as it looks. (3, -1), (3, -4), (1, -4)

Rotate your paper according to the directions.

3 Turn your paper back and plot the points.

How to a draw rotated object

- Rotate the paper with the pre-image plotted the specified number of degrees in the correct direction.
- Write down the new coordinates of the "image".
- Rotate the paper back to the original orientation.
- Plot the coordinates of the image.

Rotate 90° counter clockwise around the origin.

$$A(3,5) \longrightarrow A'(5,3)$$

$$B(1,2) \longrightarrow B'(-2, |)$$

$$C(4,3) \longrightarrow C'(-3,4)$$

Rotate 180° counter clockwise around the

origin.

$$A(3,5) \longrightarrow A'(-3,-5)$$

$$B(1,2) \longrightarrow B'(-1,-2)$$

$$C(4,3) \longrightarrow C'(-4,-3)$$

Example #2: rotate the given shape

rotation 180° about the origin

Why do you think there was no direction given for the rotation?

180° in either direction will get you to the same place.

Example #3: rotate the given shape

rotation 90° clockwise about the origin

Example #4: write the rotation that must have occurred

180° either direction

Example #5: write the **TWO** rotations that could have occurred

90° counter clockwise

Rotations of Shapes

Graph the image of the figure using the transformation given.

1) rotation 180° about the origin

2) rotation 90° counterclockwise about the origin

3) rotation 90° clockwise about the origin

4) rotation 180° about the origin

5) rotation 90° clockwise about the origin U(1, -2), W(0, 2), K(3, 2), G(3, -3)

6) rotation 180° about the origin V(2, 0), S(1, 3), G(5, 0)

Find the coordinates of the vertices of each figure after the given transformation.

- 7) rotation 180° about the origin Z(-1, -5), K(-1, 0), C(1, 1), N(3, -2)
- 8) rotation 180° about the origin L(1, 3), Z(5, 5), F(4, 2)

- 9) rotation 90° clockwise about the origin S(1, -4), W(1, 0), J(3, -4)
- 10) rotation 180° about the origin V(-5, -3), A(-3, 1), G(0, -3)

Write a rule to describe each transformation.

11)

12)

13)

14)

Homework

Finish classwork