Answers | Investigation 3

Applications

1. a. $A+$ Rental: $175+0.10 x=c$;

Zippy: $220+0.05 x=c$
b.

Car Rental

c. 900 miles, $\$ 265$
d. Zippy will be cheaper for distances greater than 900 miles.
e. If the car is driven 225 miles, $A+$ Rental will charge $\$ 197.50$.
2. a. Mariana: $d=1,250-70 t$

Ming: $d=800-40 t$
b. $1,250-70 t=800-40 t$; solution $t=15$ minutes
c. less than 15 minutes
d. Answers will vary. If we use a graph of the functions in part (a), we have this graph.

We know that the intersection point is at $t=15 \mathrm{~min}$. Checking other values:

Time (minutes)	Distance Between Girls (meters)
14	$270-240=30$
14.5	$235-220=15$
15	$200-200=0$
15.5	$180-165=15$
16	$160-130=30$

We can say that between $t=14.5$ and $t=15.5$, the distance is less than 20 meters.
3. a. T
b. T
c. F
d. F
e. T
f. can't tell
4. $2<x$

5. $x>10$

6. $x \leq 12$

7. $x<-4 \frac{1}{3}$

8. Symbolic reasoning will vary.
a. $x>7.5$
b. $x>-5$
c. $x<\frac{2}{3}$
d. $x>4$
e. $x=\frac{40}{19}$ or approximately $x=2.11$
f. $x<\frac{40}{19}$ or approximately $x<2.11$
9. a. $-16 t^{2}+32 t=0$ when $t=2$ (also when $t=0$)
b. $-16 t^{2}+32 t=12$ when $t=0.5$ and $t=1.5$
c. $-16 t^{2}+32 t \geq 12$ when $0.5 \leq t \leq 1.5$
d. $-16 t^{2}+32 t \leq 12$ when $t \leq 0.5$ and when $1.5 \leq t$. Note: The ball hits the ground at $t=2$ and presumably stays there, so the equation for the height is not valid for $t>2$.
e. $-16 t^{2}+32 t=16$ when $t=1$
10. The relevant graph for parts (a)-(c) is below.
a. $x=2$ and $x=4$. Find the intersection points of $y=-x^{2}+4 x-4$ and $y=-2 x+4$. The solutions are the x-coordinates of those points.
b. $x<2$ and $x>4$. Find the intersection points of $y=-x^{2}+4 x-4$ and $y=-2 x+4$. On the x-axis, the solutions are the x-values to the left of and to the right of the x-coordinates of those points.
c. $2<x<4$. Find the intersection points of $y=-x^{2}+4 x-4$ and $y=-2 x+4$. On the x-axis, the solutions are the x-values between the x-coordinates of those points.

The relevant graph for parts (d)-(f) is below.
d. $x=-1$ and $x=6$. Find the intersection points of $y=x^{2}-5 x$ and $y=6$. The solutions are the x-coordinates of those points.
e. $-1<x<6$. Find the intersection points of $y=x^{2}-5 x$ and $y=6$. On the x-axis, the solutions are the x-values between the x-coordinates of those points.
f. $x<-1$ and $x>6$. Find the intersection points of $y=x^{2}-5 x$ and $y=6$. On the x-axis, the solutions are the x-values to the left of and to the right of the x-coordinates of those points.

11. a. $x=y=2 \sqrt{2}$ which is approximately 2.8; $x=y=-2 \sqrt{2}$
b. $x=-2 \sqrt{2}$ and $y=2 \sqrt{2} ; x=2 \sqrt{2}$ and $y=-2 \sqrt{2}$

Connections

12. -4
13. -23
14. 8
15. -8
16. -24
17. $\frac{3}{4}$
18. Solution is $(x, y)=(-4,-4)$.

19. Solution is $(x, y)=\left(-\frac{1}{2}, \frac{9}{2}\right)$.

20. Solution is $(x, y)=(1,3)$.

21. Solution is $(x, y)=(2,3.2)$.

22. $y=2 x-3$
23. $y=-4 x+1.5$
24. $y=-\frac{2}{3} x-\frac{1}{3}$
25. $y=-\frac{3}{4} x+3$
26. slope $=7$; y-intercept $=(0,-3)$; x-intercept $=\left(\frac{3}{7}, 0\right)$
27. slope $=-3 ; y$-intercept $=(0,4)$; x-intercept $=\left(\frac{4}{3}, 0\right)$
28. slope $=\frac{2}{3} ; y$-intercept $=(0,12)$;
x-intercept $=(-18,0)$
29. slope $=-\frac{1}{4} ; y$-intercept $=(0,-5)$;
x-intercept $=(-20,0)$
30. slope $=-17 ; y$-intercept $=\left(0, \frac{3}{4}\right)$; x-intercept $=\left(\frac{3}{68}, 0\right)$
31. slope $=-\frac{2}{3} ; y$-intercept $=\left(0,-\frac{20}{3}\right)$; x-intercept $=(-10,0)$
32. $-18 \div(-3)=-24 \div(-4)$
33. $1,750(-12)<(1,749)(-12)$
34. $5(18-24)<90-(-120)$
35. $-8(-5)>(-7)(-5)$
36. $4[-3-(-7)]=4(-3)-4(-7)$
37. $-5(-4)^{2}>-4(-5)^{2}$
38. a. on the circle since $6^{2}+8^{2}=10^{2}$
b. inside the circle since $7^{2}+7^{2}<10^{2}$
c. inside the circle since $(-7)^{2}+(-7)^{2}<10^{2}$
d. on the circle since $(-6)^{2}+8^{2}=10^{2}$
e. outside the circle since $(-7)^{2}+8^{2}>10^{2}$
f. outside the circle since $(-7)^{2}+(-8)^{2}>10^{2}$
39. $\frac{6}{8}>\frac{-18}{24}$
40. $\frac{6}{8}<\frac{7}{9}$
41. $\frac{6}{8}>\frac{-7}{9}$
42. $\frac{6}{8}=\frac{-18}{-24}$
43. $\frac{6}{8}<\frac{-7}{-9}$
44. $\frac{8}{6}>\frac{-9}{7}$
45. a. perimeter of square $=$ perimeter of rectangle
b. area of square $>$ area of rectangle
c. perimeter of square $>$ circumference of circle
d. area of square $<$ area of circle
e. perimeter of rectangle $>$ circumference of circle
f. area of rectangle $<$ area of circle
46. a. $P($ all boys $)=P($ all girls $)$
b. P (exactly one boy) $=P$ (exactly 2 girls)
c. $P(\mathrm{BGB})=P(\mathrm{BBG})$
d. P (two boys and one girl) $>P($ all girls $)$
47. B
48. Answers will vary. Some examples are:
a. $\frac{-1}{2}<\frac{5}{6}$ and $\frac{-2}{1}<\frac{6}{5}$
b. $\frac{1}{2}<\frac{3}{4}$ and $\frac{2}{1}>\frac{4}{3}$
49. $C ;-0.4$ is the opposite reciprocal of 2.5 .
50. The solution is approximately $x>7.64$.
51. $y=x^{2}+4 x$ is equivalent to $y=x(x+4)$; x-intercepts $(0,0)$ and ($-4,0$); y-intercept (0,0)
52. $y=x^{2}+4 x+4$ is equivalent to $y=(x+2)^{2}$; x-intercept $(-2,0) ; y$-intercept $(0,4)$
53. $y=x^{2}+3 x-10$ is equivalent to $y=(x-2)(x+5) ; x$-intercepts $(2,0)$ and $(-5,0)$; y-intercept $(0,-10)$
54. $y=x^{2}-8 x+16$ is equivalent to $y=(x-4)^{2} ; x$-intercept $(4,0)$; y-intercept $(0,16)$
55. $y=x^{2}-4$ is equivalent to $y=(x+2)(x-2)$; x-intercepts $(2,0)$ and $(-2,0) ; y$-intercept $(0,-4)$
56. $y=x^{2}+4 x+3$ is equivalent to $y=(x+1)(x+3) ; x$-intercepts $(-1,0)$ and $(-3,0) ; y$-intercept $(0,3)$
57. H

Extensions

58. a. $x<-3$ or $x>6$ has number line graph:

b. $x<3$ and $x>2$ has number line graph:

c. $x>8$ or $x<4$ has number line graph:

d. $x>-10$ and $x<1$ has number line graph:

59. a. T b. T c. F d. F
60. a. $-4 \leq x \leq 4$
b. $x<-4$ or $x>4$
61. a. $x<3$
b. $x>2$
