Rewrite the equation by isolating y .

$$
\begin{gathered}
-7 x+9 y+4=0 \quad y= \\
+7 x \quad+7 x \\
\hline 9 y+4=7 x \\
\frac{-4}{}=4 \\
\hline \frac{9 y}{9}=\frac{7 x}{9}-\frac{4}{9} \\
y=\frac{7 x}{9} x-\frac{4}{9}
\end{gathered}
$$

Rewrite the equation by isolating x.

$$
\begin{aligned}
4 x+6 y+12 & =0 \\
-6 y & -6 y \\
4 x+12 & =-6 y \\
-12 & -12 \\
\frac{4 x}{4} & =\frac{-6 y-12}{4}-\frac{12}{4} \\
x & =\frac{-3}{2} y-3
\end{aligned}
$$

1.3 Recap

Nola graphed the equations. $(0,18) \quad(18,0)$

Jimfa took the 2 equations and made one.

$$
\left\{\begin{array}{l}
y=-x+18 \\
y=-0.5 x+12.5
\end{array}\right.
$$

To find y. we need to substitute 11 in for x

$$
\begin{aligned}
& y=-x+18 \\
& y=-(11)+18 \\
& y=7
\end{aligned}
$$

Why not use both equations?

$$
\begin{aligned}
& y=-0.5 x+12.5 \\
& y=-0.5(11)+12.5 \\
& y=-5.5+12.5 \\
& y=7
\end{aligned}
$$

We denitneed te! We
will get the same answer.

What do you think of the 2 methods?

Graphing may not always be accurate due to many factors:
size of graph
accuracy of graph procedure
estimating decimals on a graph

Answers to yesterday's Classwork

B.

1. $\left\{\begin{array}{l}y=1.5 x-0.4 \\ y=0.3 x+5\end{array}\right.$
2. $\left\{\begin{array}{l}x+y=3 \\ x-y=-5\end{array}\right.$
3. $\left\{\begin{array}{l}3 x-y=30 \\ x+y=14\end{array}\right.$
(4.5, 6.35)
$(-1,4)$
$(11,3)$
4. $\left\{\begin{array}{l}x+6 y=15 \\ -x+4 y=5\end{array}\right.$
5. $\left\{\begin{array}{l}x-y=-5 \\ -2 x+2 y=10\end{array}\right.$
6. $\left\{\begin{array}{l}x-y=-5 \\ -2 x+2 y=8\end{array}\right.$
$(3,2)$
??
??
7. $\left\{\begin{array}{lr}y=1.5 x-0.4 \\ y=0.3 x+5 & \text { Looking for a common }\end{array}\right.$

$$
\begin{aligned}
& 1.5 x-0.4=0.3 x+5 \\
& \qquad(4.5,6.35)
\end{aligned}
$$

2. $\left\{\begin{array}{l}x+y=3 \\ x-y=-5\end{array}\right.$

Isolate x :

$$
\begin{gathered}
x+y=3 \\
\frac{y-y}{x=3-y} \\
x-y=-5 \\
+y+y \\
x=y-5 \\
3-y=y-5
\end{gathered}
$$

3. $\left\{\begin{array}{l}3 x-y=30 \\ x+y=14\end{array} \quad\right.$ bolate y is easiest

$$
\left\{\begin{aligned}
y= & 3 x-30 \\
y= & 14-x \\
& 3 x-30=14-x \text { solve for } x
\end{aligned}\right.
$$

4. $\left\{\begin{array}{l}x+6 y=15 \\ -x+4 y=5\end{array}\right.$ 1solate x
5. $\left\{\begin{array}{l}x-y=-5 \\ -2 x+2 y=10\end{array}\right.$

Isolate x :

$$
\begin{gathered}
x-y=-5 \\
+y+y \\
x=y-5 \\
y-5=y-5 \\
0=0 \\
-5=-5
\end{gathered}
$$

$$
\begin{aligned}
& -2 x+2 y=10 \\
& \frac{-2 y-2 y}{-2 x}=\frac{-2 y+10}{-2}-2 \\
& x=y-5
\end{aligned}
$$

Infinite
\# of solutions

Same equation \searrow same line gus infinite solutions
6. $\left\{\begin{array}{l}x-y=-5 \\ -2 x+2 y=8\end{array}\right.$

Isolate y :

$$
\begin{array}{cc}
x-y=-5 & -2 x+2 y=8 \\
y=x+5 & \frac{+2 x+2 x}{2 y}=\frac{8+2 x}{2} \\
& y=4+x
\end{array}
$$

same slope

$$
\begin{gathered}
\begin{array}{c}
\text { different } \\
\text { yint }
\end{array} \frac{x+5=4+x}{5}-x \\
\mathbb{K}_{\text {Not atrue }}
\end{gathered}
$$ Statement $-\therefore$

No solution

Look at actual lines

$$
\begin{array}{ll}
x=y-5 & x=y-4 \\
y=(1) x+5) & y=(1 x+4
\end{array}
$$

put them both in slope-

Parallel lines
same slope different y-inks

Because the lines never cross, there is no solution!

Classwork

Page 33, \#'s 3-8

