Solve the following for x :

$$
\begin{aligned}
& -4(x+2)-3 x=20 \\
& x=-4 \\
& -4 x-8-3 x=20 \\
& +8+8 \\
& \frac{-7 x}{-7}=\frac{28}{-7} \\
& x=-4 \\
& 3(x-2)-1(x+5)=17 \\
& x=14 \\
& 3 x-6-x-5=17 \\
& 2 x-11=17 \\
& \frac{+11+11}{\frac{2 x}{2}=\frac{28}{2}} \\
& x=14
\end{aligned}
$$

How many IXL questions do you think all my math students have answered so far this school year?

Fundraiser Sales

3. Use the graph to find three other ordered pairs that meet the profit goal. Better to have a lavger grapn.
4. Suppose the number of T-shirts sold was on the vertical axis and the number of caps sold was on the horizontal axis. Would the solutions change? Explain.

Solutions
are written:
(s, c)
(c, s)

Classwork
1.1C 1 and 2, and 1.1D

C For each equation x'y-intercepts are cosy!

- find five solution pairs (x, y), including some with negative values.
- plot the solutions on a coordinate grid and draw the graph showing all possible solutions.

1. $x+y=10$
2. $x-2 y=-4$
(D) Make a conjecture about the shape of the graph for any equation in the form $A x+B y=C$, where A, B, and C are fixed numbers. Explain why your conjecture is true.

Ar equation for Part 1:

$$
\begin{gathered}
5 z+10 c=600 \\
\uparrow \hat{A} x+B y=c
\end{gathered}
$$

Page 14, \#'s 5-8

Find three pairs of values (x, y) that satisfy each equation. Not these printsunduse thepattenntofindwemere solution paiks. (Hint: What is y if $x=0$? What is x if $y=0$?)
5. $6=3 x-2 y$
6. $10=x+2 y$
7. $2 x+y=6$
8. $-3 x+4 y=-4$

Homework

Page 13, \# 1

1. For a fundraiser, students sell calendars and posters.
a. What equation shows how the income I for the fundraiser depends on the number of calendars c and the number of posters p that are sold?
b. What is the income if students sell 25 calendars and 18 posters?
c. What is the income if students sell 12 calendars and 15 posters?
d. What is the income if students sell 20 calendars and 12 posters?
e. Find three combinations of calendar
 sales and poster sales that will give an income of exactly $\$ 100$.
f. Each answer in part (e) can be written as an ordered pair (c, p). Plot the ordered pairs on a coordinate grid.
g. Use your graph to estimate three other (c, p) pairs that would meet the $\$ 100$ goal.
