Concept	Example
Exponential Growth: An exponential pattern	1. Which of these tables illustrates a linear
of change can often be recognized in a verbal	growth pattern for y, and which an
description of a situation or in the pattern of	exponential growth pattern?
change in a table of (x, y) values. In general,	
one variable, y, is said to be growing	
exponentially with respect to another	
variable, x, if, for each increment of one unit in	
x, y increases by multiplying the last value of	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
y by a constant factor.	
	c d
	х у х у
	0 1 0 100
	1 3 1 150
	2 6 2 225
	$\frac{3}{10}$ $\frac{3}{337.5}$
	4 15 4 506.25
	 a. The y-values change by a factor of 3 as the x values change by increments of 1. Thus, 1 x 3 = 3, 3 x 3 = 9, 9 x 3 = 27 etc. This is an exponential or <i>multiplicative</i> pattern of growth. b. The y-values change by increasing by 3 each time the x values change by and increment of 1. Thus, 5 + 3 = 8, 8 + 3 = 11, 11 + 3 = 14 etc. This is a linear or <i>additive</i> growth pattern. (See <i>Moving Straight Ahead</i> unit for more information on linearity.) c. Shows neither exponential nor linear pattern of growth (though there is a pattern). d. This is an exponential pattern of growth. The multiplicative factor is 1.5. Thus 100 x 1.5 = 150, 150 x 1.5 = 225 etc.
	Note: It is important to distinguish between a constant growth <i>factor</i> (multiplicative), as just illustrated in an exponential pattern, and the constant <i>additive</i> pattern in linear relationships.

Vocabulary: Growing, Growing, Growing.

Growth Factor The constant multiplicative factor referred to for Exponential Growth (above) is called the growth factor . This constant factor can also be obtained by dividing each successive <i>y</i> -	2.	What is th showing a example a. The gr d. The g	he gro a patte 1? rowth fa rowth f	<i>wth fa</i> orn of e actor is factor i	exponer s 3. is 1.5.	the two ntial gro	tables wth in
value by the previous <i>y</i> -value.	3.	The grow the table mold is re (time, are follow a p Assuming exponent	rth of a below. ecordec ea) pair pattern g that ti ial, wh	t mold The a d every rs are g of exp he pat <u>at is th</u>	patch i area co y 24 ho graphe onentia tern of ne grov	s record overed b ours. Wi d they s al growth growth wth fact	led in by the hen the eem to h. is or ?
		Time in days	0	1	2	3	4
		Area in square cm	3.2	4	5.1	6.24	7.8
		By dividin we have	g each <u>4</u> = 3.2	n area 1.25,	by the $\frac{5.1}{4} = 1$	prior are 1.275, <u>€</u>	ea value 5.24 = 5.1
		1.22, 7.3 constant. measuring would not ratio, even best fit to these grov approxima	8/24 = 1. Since g in an c expec n if an this sit wth fac ately 1	25. The this dependence of the experience of the experience of the exponituation of the exponence of the exp	ne ratio ata is c imenta d exac ential p . Ther vould gi a grow	is not a collected I setting tly the s battern <i>i</i> efore, a ive vth facto	l by , we ame s the veraging or.
Exponential Equations Examining the growth pattern leads to a generalization that can be expressed as an equation: $y = ab^x$, where <i>b</i> is the growth factor, and <i>a</i> is the "starting" value, or the value of y when $x = 0$. The independent	4.	Give equa relationsh a. The gr value multipl that fits d. The gr value	ations in nips in rowth fa is 1. T y by 3. y by 3. s this p rowth fa is 100.	for the examp actor is The x te The x te The x tern actor is The x	<i>expon</i> ble 1. s 3. Th ells hov efore, t is y = s 1.5. x tells h	ne starti ne starti ny many the equa 1(3) ^x . The init now mai	ng times to ation ial ny times

variable, <i>x</i> , is an exponent; it tells how many times to multiply by the growth factor. (In the contexts in this unit x is a whole number. In general, x can be any real number.) y-intercept or initial value : In the table the initial value is the value of y when x = 0. On the graph this appears as the y-intercept (see below.) Students can find the y-intercept or initial value from the equation or from the graph or from the table.	to multiply by 1.5. Therefore, the equation that fits this pattern is $y = 100(1.5)^x$. 5. Find the equation that fits the exponential growth pattern shown in the table below. x 2 5 6 9 y 4500 15187.5 22781.25 76886.71875 In this example the table is incomplete; that is, it does not offer convenient values for y for every increment of 1 in x. This is not a problem as long as we are given that the underlying pattern is exponential growth. Comparing (5, 15187.5) to (6, 22781.25) we have a growth factor of $\frac{22781.25}{15187.5} = 1.5$. The other parameter we need is the starting value, that is the value of y when x = 0. To obtain this we can work backwards in the table, dividing by 1.5 at each stage. This produces X 0 1 2 Y 2000 3000 4500 X Now we know the starting value and the growth factor. The equation that fits this exponential relationship is $y = 2000(1.5)^x$.
Graphs of Exponential Growth Relationships : Have a characteristic shape, which is created by the multiplicative nature of the growth. In the graph of the <i>exponential</i> equation $y = ab^x$ the starting value or y –intercept is $y = a$ when x = 0; at $x = 1$ we have $y = ab$; at $x = 2$ we have $y = ab^2$. In other words the graph of $y = ab^x$ will show a vertical change of ab - a = a(b - 1) between $x = 0$ and $x = 1$; the vertical change will be $ab^2 - ab = ab(b - 1)$ between $x = 1$ and $x = 2$ etc. The vertical change is not constant. It increases by a multiplicative factor of b every time x increases by 1 unit. Compare this to	 6. Compare the graphs of y = 2x + 1 and y = 2^x. Specifically how does the vertical change in y values indicate that the first equation is linear and the second is exponential. In the graphs of y = 2^x (top graph) and y = 2x + 1 (bottom graph), the horizontal change is the same. Both graphs show a y intercept at (0,1). On the graph of y = 2x + 1, the vertical change is a constant; 2 is added each time to the y-value, as x increases by 1 unit. This produces a straight line, slope 2, characteristic of a linear function. On the graph of y = 2^x the vertical change

the graph of the <i>linear</i> equation $y = mx + b$. The value of y increases by adding <i>m</i> for each increment of 1 unit in x. The y-intercept is b. Thus starting at $x = 0$ we have $y = b$; at $x = 1$ we have $y = b + m$; for $x = 2$ we have $y = b + 2m$ etc. In other words the graph of $y = mx + b$ will show a vertical change of <i>m</i> for each increase of 1 unit in x. Note: Exponential relationships can also be defined for negative and non-integer exponent values, though students do not work with these values for the independent variable in this unit. The related graphs are <i>continuous</i> <i>curves</i> (rather than graphs of plotted points) with shapes similar to those shown above. The graph of any exponential growth pattern, $y = a(b)^x$ may show a slow increase at first but grows at an increasing rate because its growth is multiplicative. The graph curves upward from left to right.	increases by a multiple of the growth factor 2 as the graph rises; thus, first the vertical change is 2, then 2 x 2, then 2 x 2 x 2 etc. This pattern of increasing change is characteristic of an exponential function.
Growth Rates	7. If the cost of a cell phone increases from \$80
In this unit, growth rate is used the way we see that terminology in everyday settings, to compare a current value to a starting value by indicating the percentage by which the starting value has changed. This is different from <i>growth factor</i> . The two are related in a particular way. In general, growth rate + 1 = growth factor. For example, growth rate of 5% is the same as a growth factor of 100% + 5% = 105%.	 to \$120 we can say that the increase is \$40. What is this as a growth rate? We can say that the percentage increase is 40/80 = 50%. As a growth XiX this is 0.5. factor 8. The following table indicates the rise in a family's medical expenses over the past 3 years (numbers have been simplified). Is this an exponential relationship? If so what is the growth factor and what is the growth rate?
	Time0123Prices\$100118139.24164.30

	$\frac{118}{100} = \frac{139.24}{118} = \frac{164.30}{139.24} = 1.18$. Since there is a constant growth factor we may conclude that this data can be represented by an exponential relationship. The growth factor is 1.18 or 118%. Of this 118%, 100% represents the original price and 18% represents the percentage increase. Thus the growth rate is 18%.
	9. An investment offers an effective growth rate of 6%, on a starting amount of \$1000. What are the values of the investment in the first 3 years? What is the growth factor ? And what is the equation that fits this relationship between values and time?
	The growth rate is given as 6%. This means that the value of the investment is 6% higher each year than it was the prior year. We can calculate the value of the investment each year by taking 6% of the prior year value and adding this on, or we can take 106% of the prior year's value. Thus, we can calculate 0.06(1000) + 1000 = 1060, or 1.06(1000) = 1060. $\boxed{\text{Time} \ 0 \ 1 \ 2 \ 3}}{\text{Value} \ 1000 \ 1060 \ 1123.60 \ 1191.02}}$ The growth factor is 1.06, and the starting
	value is 1000. So the equation is $V = 1000(1.06)^{t}$.
Exponential Decay Exponential models also describe patterns in which the value of a dependent variable decreases as time passes. In this case, the constant multiplicative factor is referred to as the <i>decay factor</i> . Decay factors work just like growth factors, only they result in decreasing relationships because they are less than 1.	 10. An agricultural student is testing a new pesticide. The pesticide claims to reduce the number of crop eating insects by 80% at each application. The student estimates the number of pests and then sprays a test plot once a day. She does this for 5 days. Here are the results. <u>day</u> 0 1 2 3 4 Number 320 80 24 6 0 of pests Do these results confirm the claim?
	The graph of the pairs (day, pests) looks like

It is helpful to think of the decay rate as the value <i>lost</i> and the decay factor as the value <i>left</i> . Thus an 80% decay rate means that 80% of the value is lost and 20% is left. 11. The following is the graph of $y_1 = 100(0.8)^x$.
a. Compare to the graph of $y_2 = 100 - 20x$.
a.
X 0 1 2 3 4 5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
100 y 1 100 y 22
90 00
80-
30- 30-
20- 20-
10- 10-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
The graph of y_2 shows a constant vertical change of 20 in y values for each change of 1 in x. y_2 is a linear function.
 The graph of y₁ shows a <i>changing</i> vertical change in y. First the drop is 20, from x = 0 to x = 1. Then the drop is 16, or 0.8(20), from x = 1 to x = 2. Then the drop is 12.8, or (0.8)(16), from x = 2 to x = 3. In other words the vertical change is decreasing by a factor of 0.8 for each increase of 1 unit in x. This makes the curve steep to start with and less steep as x increases. b. To continue the table for y₁ we have to multiply each y value by 0.8 to find the succeeding y value. Each y-value is smaller

	it is always 80% of some positive quantity. (In practical situations we might say the amount left is zero because it is too small to be detected.)
--	---