Amanda wrote an equation that modeled her ride in a tricycle race that measured her distance in meters (y) for each second (x) she rode:

$$
y=1.5 x+1 \quad \frac{\Delta y}{\Delta x}=\frac{\text { meters }}{\sec }
$$

What do the slope and y-intercept represent in the context of the problem?

Slope: she rode $1.5 \mathrm{~m} /$ second
y-int: $(0,1) \quad$ at time $=0$ she is at 1 meter time distance y-int tells us she had a 1 meter head stan

$$
y=1.5 x+1 \quad \frac{\Delta y}{\Delta x}=\frac{1.5 m}{s c c}
$$

If the race is 25 meters long, use the equation to find out how long it took before Amanda crossed the finish line.

$$
\begin{aligned}
& y=1.5 x+1 \\
& 25=1.5 x+1 \\
& -\frac{1}{24}=1 \\
& \frac{24}{1.5} \frac{1.5 x}{1.5} \\
& 16=x \quad 16 \text { seconds }
\end{aligned}
$$

(6) ${ }^{\text {ttp://www.youtube.com/watch?v=AWof6knvQwE }}$

Converting Scientific Notation

Kimberley Thomas

3.45×10^{-2}

* an integer is a positive or negative whole number including zero

$$
\{\ldots-3,-2,-1,0,1,2,3 \ldots\}
$$

$$
\begin{aligned}
& \text { Written in proper } \\
& \text { scientific notation } \\
& 1.9 \times 10^{-22} \\
& 2.1203 \times 10^{-16} \\
& 2.35 \times 10^{5} \\
& 3.214 \times 10^{1} \\
& 5 \times 10^{-9} \\
& 6.09 \times 10^{7}
\end{aligned}
$$

12×10^{0}

45.9×10^{-6}

10.3×10^{9}
Not written in proper scientific notation

Scientific notation is used to write really big numbers.
standard notation \qquad scientific notation

$$
\begin{array}{cc}
123,000000,000 & 1.23 \times 10^{11} \\
45,000,000 & 4.5 \times 10^{7} \\
67800,000,000,000 & 6.78 \times 10^{13} \\
9,000 & 9.0 \times 10^{3}
\end{array}
$$

It's about place values!
We know where the decimal point currently is, and we know where we need it to be to write the number in proper scientific notation. We then need to count how many place values we have moved it.

Scientific notation is used to write really big numbers.

$$
\begin{aligned}
& \begin{array}{l}
\text { scientific notation } \longrightarrow \mathbf{~ C 2 @ ~} \mathbf{1 0}^{\mathbf{3}}=7820
\end{array} \\
& 3.04 \times 10^{8}=304,000,000 \\
& \begin{array}{c}
3.04000000 \\
5 \times 100 \\
5 \underbrace{000}
\end{array}=50,000 \\
& 6.2103 \times 10^{10} \\
& 62103000000,62,103,000,000
\end{aligned}
$$

Start with the number written in SN form. See where the decimal point currently is and then move the number of places that the exponent indicates.

As the planets orbit the sun, the closest Pluto gets to Earth is approximately $2,700000,000$ miles.

Scientific notation is used to write really small numbers.
standard notation \qquad scientific notation
$0.000000034 \quad 3.4 \times 10^{-8}$
$0.00000000056095 .609 \times 10^{-10}$
$0.000000000064 \quad 6.4 \times 10^{-11}$
0.007
7×10^{-3}

Scientific notation is used to write really small numbers.

$$
\begin{aligned}
& \text { scientific notation } \\
& \text { standard notation } \\
& 4.8 \times 10^{-6}=0.0000048 \\
& 1.2 \times 10^{-12} 0.000000000001 \\
& \text { how many decimal you } \\
& \text { places you need to } \\
& \text { move. } \\
& 10.00000000012 \\
& 0.9 \times 10^{-2}=0.09 \\
& 7.1034 \times 10^{-5} \\
& =0.000071034
\end{aligned}
$$

0000071034

The thickness of a red blood cell is approximately 0.0003125 of an inch.

$$
3.125 \times 10^{-4}
$$

How do you know that a number written in scientific notation will be really big or really small?

Big
Small
exponent is a
large postie \#
exponent is negative

Write in proper Scientific Notation Form

$$
\begin{aligned}
& 347.8 \times 10^{3} \\
& 3.478 \times 10^{5} \\
& 347800 \\
& .0045 \times 10^{8} \quad 4.5 \times 10^{5} \\
& 00450000 \\
& .023 \times 10^{-2} \\
& 2.3 \times 10^{-4} \\
& 850 \times 10^{-5} \quad 8.5 \times 10^{-3} \\
& 00850
\end{aligned}
$$

Until you understand the pattern, thelps to expand out to standard form and then put back into proper SN form,

Rewrite in decimal form.

1. 3.79×10^{5}
2. 2.5×10^{-2}
3. 8.44×10^{1}
4. 6.5393×10^{4}
5. 3.589×10^{-3}
6. 9.1187×10^{0}
7. 1.0056×10^{-5}
8. 7.2658746×10^{8}

Rewrite in scientific notation.

$7,960,000,000$	$63,000,000$
0.007485	0.0602
45.668	$22,078,600$
998.653	0.000070005
0.0000056388	64.3

Homework
Finish classwork

