Warm Up

What is your favorite pie?

Apple

Pumpkin

Chocolate Cream Pie

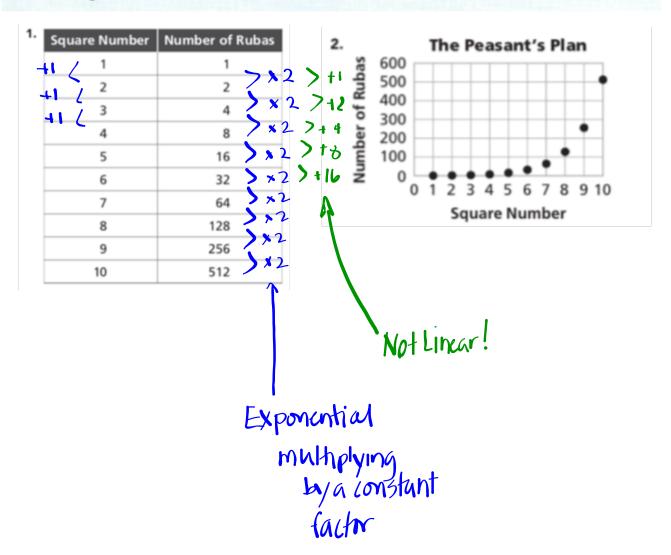
Strawberry Rhubarb

Blueberry

Pecan

Cherry

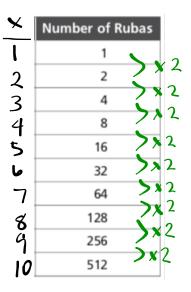
Never had pie



Put a checkmark next to your favorite.

Problem 1.2

- A 1. Make a table showing the number of rubas the king will place on squares 1 through 10 of the chessboard.
 - Graph the points (number of the square, number of rubas) for squares 1 to 10.
 - Write an equation for the relationship between the number of the square n and the number of rubas r.



How can we write an equation?

We know the equation for Problem 1.1

Number of Cuts | Number of Ballots 1 2 3 5 32 6 64 7 128 256 9 512 10 1,024

Problem 1.2

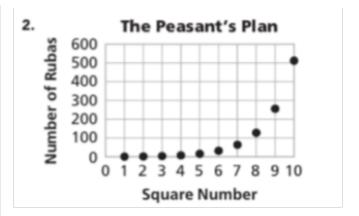
y once you think you have your equation, check that it works with 2 points in your table.

- Comparing the two tables, it looks like the y-values in Problem 1.2 are half the values in Problem 1.1.
- We know the equation for 1.1 is y = 2^x
- The equation for 1.2 must then be the equation for 1.1 divided by 2.
- Check it out!

How can we write an equation?

We know the equation for Problem 1.1

Number of Cuts	Number of Ballots	
1	2	
2	4	
3	8	
4	16	
5	32	
6	64	
7	128	
8	256	
9	512	
10	1,024	
, , , X		


Problem 1.2

<u>×</u>	Number of Rubas
1	1
2	2
3	4
4	8
23456	16
6	32
7	64
7 89	128
9	256
10	512

Always check your equation with at least 2 different data points from your table to make sure it works!

- 1. How does the number of rubas change from one square to the next?
 - 2. How does the pattern of change you observed in the table show up in the graph? How does it show up in the equation?

1.	Square Number	Number of Rubas
	1	1
	2	2
	3	4
	4	8
	5	16
	6	32
	7	64
	8	128
	9	256
	10	512

Problem 1.1

Number of Cuts	Number of Ballots
1	2
2	4
3	8
4	16
5	32
6	64
7	128
8	256
9	512
10	1,024

Problem 1.2

Square Number	Number of Rubas
1	1
2	2
3	4
4	8
5	16
6	32
7	64
8	128
9	256
10	512

- **1.** Which square will have 2³⁰ rubas? Explain.
 - **2.** What is the first square on which the king will place at least one million rubas? How many rubas will be on this square?
 - **3.** Larissa uses a calculator to compute the number of rubas on a square. When is the first time the answer is displayed in scientific notation?
- Compare the growth pattern to the growth pattern in Problem 1.1.

Homework

Finish classwork