A video posted on the internet has gone viral, and the total number of views is increasing by 20% every hour. If the video currently has 52,000 views, how many views will it have in 4 hours?

Rate: +20%.

Factor: 1.2

y= 52,000 (1.2)
= 107,827.2 we cannot have,
a part of a "View"
= 107,827 Views

Recap from yesterday

What are your general observations? Is there anything interesting or surprising?

equation to prove your answer.

1.	What is the independent variable and what is the dependent variable?
	I: Drop Height D: Rebound Height
	Calculate Rebound Ratios by dividing <i>Rebound Height</i> by <i>Drop Height</i> . Determine a Rebound Ratio that feels like a good representative for your data set. Show the work below.
	B.ball: 0.58 Tennis: 0.47 Lacrossc: 0.64 Golf: 0.64
3.	Using <u>Desmos</u> , add a table and plot your points. Looking at your graph, would a linear model or exponential model represent the situation best?
4.	If you think it is linear you can have <u>Desmos</u> calculate a line of best fit. In a new line, type $y_1 \sim mx_1 + b$. Look at the calculated values of m and b and write a linear equation.
	<i>y</i> =
	What does your slope mean in the context of the situation? Rebound Height = Rebound Ratio Drop Height
	or & Doop Helghi
6.	Is your y-intercept realistic? Justify your answer in the context of the situation.
7.	Compare the <i>Rebound Ratio</i> from Question 2 and the <i>slope</i> of your line of best fit. What do you notice?
1	Cebound Ratio =
	5/0pc =
8.	If you dropped your ball from a height of 25 feet, what would be the rebound height? Use your

Part 2 – Successive Bounces

What if you drop the ball from a height of 200 cm and let it bounce repeatedly?

- Drop the ball from 200 cm and let it bounce 6 times (film from far away to view all bounces).
- Measure and record the height of the ball after the 6 successive bounces.
- Repeat the process two more times to verify data values are accurate.

Bounce Number	Rebound Height Trial 1 (cm.)	Rebound Height Trial 2 (cm.)	Rebound Height Trial 3 (cm.)
0 (before drop)	200	200	200
1			
2			
3			
4			
5			
6			

9.	Using Desmos, add a table and plot your most accurate Trial. Looking at your graph, would a linear
	model or exponential model represent the situation best? Explain.

10	. <u>Use your c</u>	<u>lata table</u> to write an equ	uation for the height o	f the ball in inches, y	, after x number of
	bounces.	If you think it could be ex	xponential, in a new lir	ne, type $y_1 \sim ab^{x_1}$	

11. Wha	it do the valu	ues of a and b	represent in the	context of the	problem?
---------	----------------	--------------------	------------------	----------------	----------

a represents:

b represents:

12. Compare the equation you wrote for Part 2 and the equation in Part 1. What do you notice?			
Equation from Part 1:			
Equation from Part 2:			
Summary:	(C-block	
13. What are the rebound ratios for	Ball	Rebound Ratio	Bounciness Rank
all the ball types used? Compare your data with other groups and	Lacrosse ball	D.63	Dourieriess Runk
complete the table.	Tennis ball	0.53	4
	Basketball	0.60	3
	Ping Pong Ball		
	Golf Ball	0.61	2
	Playground Ball		
14. Compare your original predictions to the actual "bounciness" of the different ball types. 15. Were there any results that surprised you?			

12. Compare the equation you wrote for Part 2 and the equation in Part 1. What do you notice?				
Equation from Part 1:				
Equation from Part 2:				
Summary:		G-block		
13. What are the rebound ratios for all the ball types used? Compare	Ball	Rebound Ratio	Bounciness Rank	
your data with other groups and	Lacrosse ball	0.61	2	
complete the table.	Tennis ball	0.45	4	
	Basketball	0.58	3	
	Ping Pong Ball			
	Golf Ball	0.65	1	
	Playground Ball			
14. Compare your original predictions to t	the actual "bounciness	of the different ba	ll types.	
15. Were there any results that surprised you?				

Homework

Complete the packet