

Group Work - Thinking Task

- You will randomly get a playing card, numbered 9-Ace
- Silently, go to the station that corresponds to the number on your card
- The task will be presented on the board, with a ten minute timer (I may adjust the timer depending on the pace of the class)

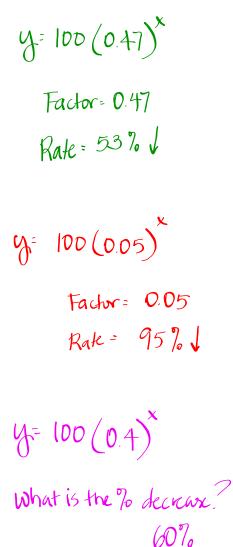
E

Imagine you posted a video on TikTok and it went viral. You now have 14,000 followers. However, you haven't posted a new video recently since you got locked out of your Tik Tok account.

With each passing day, you lose 30% of your followers.

Estimate how many followers you will have left after 4 days.

How long will it take before you have fewer than 100 followers?


Warm	Up
------	----

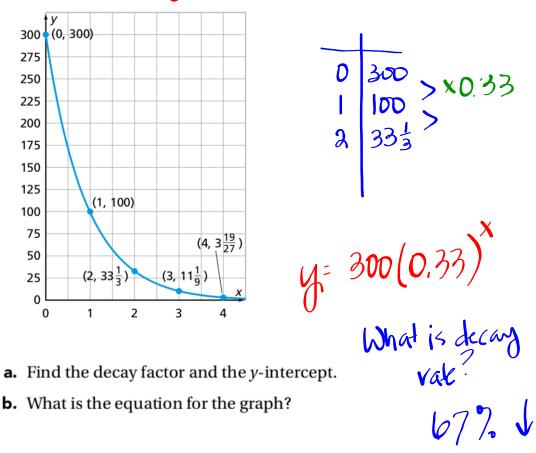
1/6

Does the following equation represent exponential growth or decay?

$$y = 4(.65)^{x}$$

What is the Factor? 0.65 decay
What is the Rate?
 $\frac{7}{6}$ change 35% decrease

Some practice:


Homework Questions?

Page 68, #'s 4-7

- **4.** Penicillin decays exponentially in the human body. Suppose you receive a 300-milligram dose of penicillin to combat strep throat. About 180 milligrams will remain active in your blood after 1 day.
 - **a.** Assume the amount of penicillin active in your blood decreases exponentially. Make a table showing the amount of active penicillin in your blood for 7 days after a 300-milligram dose.
 - **b.** Write an equation for the relationship between the number of days *d* since you took the penicillin and the amount of the medicine *m* remaining active in your blood.
 - c. What is the equation for a 400-milligram dose?

Factor = 0.6Rate = 40% For Exercises 5 and 6, tell whether the equation represents exponential decay or exponential growth. Explain your reasoning.

5. $y = 0.8(2.1)^{x}$ Growth Rate = 110% 1 6. $y = 20(0.5)^{x}$ Decay Rate = 50% 1

7. The graph below shows an exponential decay relationship.

b. What is the equation for the graph?

Problem 4.2 Recap Part A Part B **Breakdown** Active Medicine in Blood (mg) of Medicine Active Medicine in Blood (mg) X Time Since Dose (hr) Time Since Dose (hr) $m = 400 \left(\frac{1}{4}\right)^{h}$ $m = 60(0.8)^{h}$ Factor = 0.25Factor = 0.8**Rate = 75\%** 207.1 Rate =

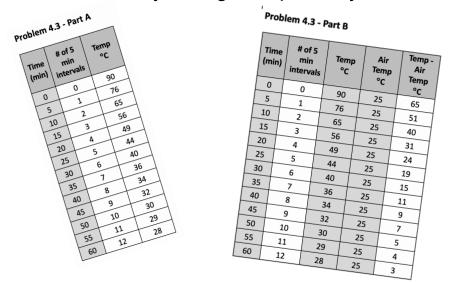
4. Dwayne was confused by the terms *decay rate* (or *rate of decay*) and *decay factor*. He said:

Because the rate of decay is 20%, the decay factor should be 0.2, and the equation should be $m = 60(0.2)^{h}$.

Do you agree with him? Explain.

5. Steven recalled that when the growth rate is 80%, the growth factor is 1.8 or 180%. How is the relationship between growth rate and growth factor similar to the relationship between decay rate and decay factor?

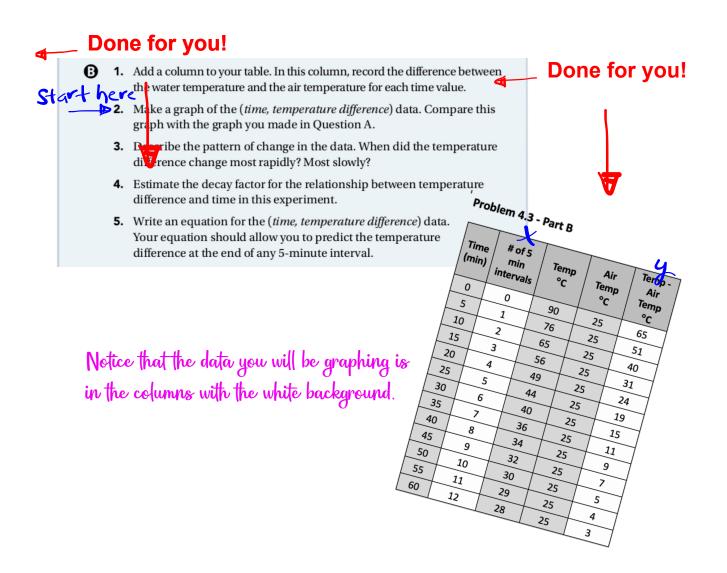
4.3 Cooling Water Modeling Exponential Decay


Sometimes a cup of hot cocoa or tea is too hot to drink at first. So you must wait for it to cool.

- What pattern of change would you expect to find in the temperature of a hot drink as time passes?
- What shape would you expect for a graph of data (*time, drink temperature*)?

This experiment will help you explore these questions.

I have data tables for you to glue/tape into your notebook.


We will be graphing by 5-minute intervals. With the number of 5-minute intervals as our x-values it will be easier to write an exponential equation.

Problem 4	.3		Dor	ne for you!	Proble	m 4.3 - Pa	rt A
1. Co	omplete the t	able with data from yo Hot Water Cool			Time (min)	# of 5 min intervals	Temp °C
	Time (min)	Water Temperature	Room Temperature		0	0	90
	0				5	1	76
	5				10	2	65
	10				15	3	56
					20	4	49
start here					25	5	44
					30	6	40
2. Describe the pattern of change in the data. When did the water					35	7	36
temperature change most rapidly? When did it change most slowly?					40	8	34
2 Ic	the relational	hin botwoon time and	water temperature on			3	

3. Is the relationship between time and water temperature an exponential decay relationship? Explain.

> Notice that the data you will be graphing is in the columns with the white background.

0	0	90
5	1	76
10	2	65
15	3	56
20	4	49
25	5	44
30	6	40
35	7	36
40	8	34
45	9	32
50	10	30
55	11	29
60	12	28

• Compare the graphs in Questions A and B with the graphs in Problems 4.1 and 4.2. What similarities and differences do you observe?

Homework

Finish classwork