How much money would you have if you deposited \$10,000 in the bank for 10 years and got 4.8% interest added each year?

Because it is a constant PERCENT we are adding. this makes it exponential.

$$
\begin{aligned}
y & =10,000(1.048)^{10} \\
& =\$ 15,981.33
\end{aligned}
$$

Simplify the following:

$$
\begin{aligned}
& \quad \underline{3} x^{4} y^{3} \cdot \underline{5} x^{5} y^{10} z^{20} \\
& 15 x^{9} y^{13} z^{20}
\end{aligned}
$$

When we writ monomials:

* The \# is in front
* All our variables are in al phabctical order.

Homework Questions?

\qquad

8-1 Study Guide and Intervention Multiplying Monomials

Multiply Monomials A monomial is a number, a variable, or a product of a number and one or more variables. An expression of the form x^{n} is called a power and represents the product you obtain when x is used as a factor n times. To multiply two powers that have the same base, add the exponents.

Product of Powers	For any number a and all integers m and $n, a^{m} \cdot a^{n}=a^{m+n}$.

Example 1 Simplify $\left(3 x^{6}\right)\left(5 x^{2}\right)$.

$$
\begin{aligned}
\left(3 x^{6}\right)\left(5 x^{2}\right) & =(3)(5)\left(x^{6} \cdot x^{2}\right) & & \text { Associative Property } \\
& =(3 \cdot 5)\left(x^{6}+2\right) & & \text { Product of Powers } \\
& =15 x^{8} & & \text { Simplify. }
\end{aligned}
$$

The product is $15 x^{8}$.

Example 2

Simplify $\left(-4 a^{3} b\right)\left(3 a^{2} b^{5}\right)$. $\left(-4 a^{3} b\right)\left(3 a^{2} b^{5}\right)=(-4)(3)\left(a^{3} \cdot a^{2}\right)\left(b \cdot b^{5}\right)$
$=-12\left(a^{3+2}\right)\left(b^{1+5}\right)$
$=-12 a^{5} b^{6}$
The product is $-12 a^{5} b^{6}$.

Exercises

Simplify.

1. $y\left(y^{5}\right)$
2. $n^{2} \cdot n^{7}$
3. $\left(-7 x^{2}\right)\left(x^{4}\right)$
4. $x\left(x^{2}\right)\left(x^{4}\right)$
5. $m \cdot m^{5}$
6. $\left(-x^{3}\right)\left(-x^{4}\right)$
7. $\left(2 a^{2}\right)(8 a)$
8. $(r s)\left(r s^{3}\right)\left(s^{2}\right)$
9. $\frac{1}{3}\left(2 a^{3} b\right)\left(6 b^{3}\right)$
10. $\left(-4 x^{3}\right)\left(-5 x^{7}\right)$
11. $\left(-3 j^{2} k^{4}\right)\left(2 j k^{6}\right)$
$\frac{1}{3}(6 \cdot 2)=\frac{1}{3} \cdot \frac{12}{1}=\frac{1 \cdot 12}{\frac{1}{3} \cdot 1}=4$
12. $\left(5 a^{2} b c^{3}\right)\left(\frac{1}{5} a b c^{4}\right)$
13. $(-5 x y)\left(4 x^{2}\right)\left(y^{4}\right)$
14. $\left(10 x^{3} y z^{2}\right)\left(-2 x y^{5} z\right)$
\qquad
\qquad
\qquad
Skills Practice
Multiplying Monomials

Simplify.
7. $a^{2}\left(a^{3}\right)\left(a^{6}\right)$
8. $x\left(x^{2}\right)\left(x^{7}\right)$
9. $\left(y^{2} z\right)\left(y z^{2}\right)$
10. $\left(\ell^{2} k^{2}\right)\left(\ell^{3} k\right)$
11. $\left(e^{2} f^{4}\right)\left(e^{2} f^{2}\right)$
12. $\left(c d^{2}\right)\left(c^{3} d^{2}\right)$
13. $\left(2 x^{2}\right)\left(3 x^{5}\right)$
14. $\left(5 a^{7}\right)\left(4 a^{2}\right)$
15. $\left(4 x y^{3}\right)\left(3 x^{3} y^{5}\right)$
16. $\left(7 a^{5} b^{2}\right)\left(a^{2} b^{3}\right)$
17. $\left(-5 m^{3}\right)\left(3 m^{8}\right)$
18. $\left(-2 c^{4} d\right)(-4 c d)$

When in doubt, expand it out!

$$
-x=-1(x)
$$

$$
\underbrace{\left.-2 \cdot 2 c^{4} d\right)(-4 c d)}_{\text {Expand it out! }} \underbrace{-2 \cdot c \cdot c \cdot c \cdot d \cdot(-4) c \cdot d}=8 c^{5} d^{2}
$$

What did we learn from yesterday?

$$
x^{5} \cdot x^{3}=x^{5+3}=x^{8}
$$

$x^{3} y^{7}=$ already is simple as we can get it

$$
3 x^{2} \cdot x^{\prime} y^{2}=3 x^{3} y^{2}
$$

Exponents and Multiplication

Simplify. Your answer should contain only positive exponents.

1) $4^{2} \cdot 4^{2}$
2) $4 \cdot 4^{2}$
3) $3^{2} \cdot 3^{2}$
4) $2 \cdot 2^{2} \cdot 2^{2}$
5) $2 n^{4} \cdot 5 n^{4}$
6) $6 r \cdot 5 r^{2}$
7) $2 n^{4} \cdot 6 n^{4}$
8) $6 k^{2} \cdot k$
9) $5 b^{2} \cdot 8 b$
10) $4 x^{2} \cdot 3 x$
11) $6 x \cdot 2 x^{2}$
12) $6 x \cdot 6 x^{3}$
13) $7 v^{3} \cdot 10 u^{3} v^{5} \cdot 8 u v^{3}$
14) $9 x y^{2} \cdot 9 x^{5} y^{2}$
15) $6 m^{3} n^{3} \cdot 8 m^{2} n^{3}$
16) $6 x^{2} \cdot 6 x^{3} y^{4}$
17) $7 u^{2} v^{5} \cdot 9 u v^{3}$
18) $u v \cdot 4 u v^{5}$
19) $10 x y^{3} \cdot 8 x^{5} y^{3}$
20) $3 u^{4} v^{5} \cdot 7 u^{2} v^{3}$

Homework

Why are Mr and Mrs. Number So Happy?

Find the simplest form for each expression below in the adjacent answer column. The letter of the exercise goes in the box that contains the number of the corresponding answer.
(E) $x^{3} \cdot x^{4}$
(19) $-3 x^{6}$
(T) $\left(u^{2} v\right)\left(-6 u v^{2}\right)$
(21) $-8 u^{6} v^{4}$
(O) $3 x^{2} \cdot x$
(14) $3 x^{3}$
(E) $v\left(u v^{2}\right)\left(u^{3} v\right)$
(3) $u^{4} v^{4}$
(1) $2 x^{2} \cdot 3 x$
(25) x^{9}
(G) $(4 u v)(-u)\left(2 u^{4} v\right)$
(12) $-8 u^{6} v^{2}$
(1) $x \cdot x^{2} \cdot x^{3}$
(7) x^{7}
(A) $x^{4}\left(-3 x^{2}\right)$
(10) x^{6}
(A) $\left(-3 u^{2}\right)\left(-u^{2} v^{2}\right)(2 u v)$
(17) $u^{3} v^{7}$
(H) $\left(-2 x^{2}\right)(-2 x)$
(2) $4 x^{3}$
(L) $\left(-u^{2}\right)\left(-6 u^{2} v^{3}\right)\left(-u^{3} v^{4}\right)$
(5) $6 u^{5} v^{3}$
(E) $x\left(-x^{4}\right)\left(-x^{4}\right)$
(23) $6 x^{3}$
(1) $(-2 u)\left(u^{2} v\right)\left(4 u^{3} v^{3}\right)$
(13) $-6 u^{3} v^{3}$
(v) $\left(\frac{1}{2} u^{2} v^{3}\right)\left(2 u v^{4}\right)$
(24) $-6 u^{7} v^{7}$
(A) $\left(a b^{2}\right)\left(a^{2} b\right)$
(18) $5 a^{6} b^{4}$
(A) $(3 a b)\left(2 a^{3} b\right)$
(6) $a^{2} b^{2}$
(L) $\left(-b^{2}\right)\left(9 a^{2} b^{3}\right)$
(22) $-a^{3} b^{5} c^{2}$
(G) $a b\left(-4 a b^{3}\right)$
(26) $12 a^{2} b^{8}$
(E) $\left(-a^{4} b\right)\left(-5 a^{2} b^{3}\right)$
(8) $-4 a^{2} b^{4}$
(T) $\left(-2 a^{3} b\right)\left(2 a b^{3}\right)$
(11) $-12 a^{3} b^{7}$
(N) $\left(6 a^{2} b^{2}\right)\left(-2 a b^{5}\right)$
(1) $-4 a^{4} b^{4}$
(D) $\left(-4 a b^{4}\right)\left(-3 a b^{4}\right)$
(16) $6 a^{4} b^{2}$
(4) $\left(3 a^{2} c\right)\left(-3 b c^{2}\right)$
(27) $-a b^{3} c^{2}$
(E) $c(-a b)\left(a^{2} b^{2} c^{2}\right)$
(28) $-a^{3} b^{3} c^{3}$
(C) $\left(-3 a^{2} c\right)\left(-3 b^{2} c\right)$
(15) $9 a^{3} b^{3} c^{5}$
(T) $(-a b)\left(-b^{2} c^{2}\right)\left(-a^{2} b^{2}\right)$
(4) $-9 a^{2} b c^{3}$
(H) $\left(a^{2} b c^{2}\right)\left(b^{2} c^{3}\right)(9 a)$
(20) $-9 a^{2} b^{5}$
(N) $\left(3 b^{2}\right)\left(\frac{1}{3} a b c\right)(-c)$
(9) $9 a^{2} b^{2} c^{2}$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28

