

Study Guide and Intervention (continued)

Dividing Monomials

Negative Exponents Any nonzero number raised to the zero power is 1; for example, $(-0.5)^0 = 1$. Any nonzero number raised to a negative power is equal to the reciprocal of the number raised to the opposite power; for example, $6^{-3} = \frac{1}{6^3}$. These definitions can be used to simplify expressions that have negative exponents.

Zero Exponent	For any nonzero number a , $a^0 = 1$.
Negative Exponent Property	For any nonzero number a and any integer n , $a^{-n} = \frac{1}{a^n}$ and $\frac{1}{a^{-n}} = a^n$.

The simplified form of an expression containing negative exponents must contain only positive exponents.

Simplify $\frac{4a^{-3}b^6}{16a^2b^6c^{-5}}$. Assume that the denominator is not equal to zero.

$$\begin{split} \frac{4a^{-3}b^6}{16a^2b^6c^{-5}} &= \left(\frac{4}{16}\right)\!\!\left(\frac{a^{-3}}{a^2}\right)\!\!\left(\frac{b^6}{b^6}\right)\!\!\left(\frac{1}{c^{-5}}\right) &\quad \text{Group powers with the same base.} \\ &= \frac{1}{4}(a^{-3}-2)(b^6-6)(c^5) &\quad \text{Quotient of Powers and Negative Exponent Properties} \\ &= \frac{1}{4}a^{-5}b^0c^5 &\quad \text{Simplify.} \\ &= \frac{1}{4}\left(\frac{1}{a^5}\right)\!\!\left(1\right)\!c^5 &\quad \text{Negative Exponent and Zero Exponent Properties} \\ &= \frac{c^5}{4a^5} &\quad \text{Simplify.} \end{split}$$

The solution is $\frac{c^5}{4a^5}$.

Exercises

Simplify. Assume that no denominator is equal to zero.

1.
$$\frac{2^2}{2^{-3}}$$

2.
$$\frac{m}{m^{-4}}$$

3.
$$\frac{p^{-8}}{p^3}$$

4.
$$\frac{b^{-4}}{b^{-5}}$$

5.
$$\frac{(-x^{-1}y)^0}{4w^{-1}y^2}$$

6.
$$\frac{(a^2b^3)^2}{(ab)^{-2}}$$

7.
$$\frac{x^4y^0}{x^{-2}}$$

8.
$$\frac{(6a^{-1}b)^2}{(b^2)^4}$$

9.
$$\frac{(3st)^2u^{-4}}{s^{-1}t^2u^7}$$

10.
$$\frac{s^{-3}t^{-5}}{(s^2t^3)^{-1}}$$

11.
$$\left(\frac{4m^2n^2}{8m^{-1}\ell}\right)^0$$

12.
$$\frac{(-2mn^2)^{-3}}{4m^{-6}n^4}$$

Practice

Dividing Monomials

Simplify. Assume that no denominator is equal to zero.

1.
$$\frac{8^8}{8^4}$$

2.
$$\frac{a^4b^6}{ab^3}$$

3.
$$\frac{xy^2}{xy}$$

$$4. \ \frac{m^5 np}{m^4 p}$$

5.
$$\frac{5c^2d^3}{-4c^2d}$$

6.
$$\frac{8y^7z^6}{4y^6z^5}$$

7.
$$\left(\frac{4f^3g}{3h^6}\right)^3$$

8.
$$\left(\frac{6w^5}{7p^6s^3}\right)^2$$

9.
$$\frac{-4c^2}{24c^5}$$

10.
$$x^3(y^{-5})(x^{-8})$$

11.
$$p(q^{-2})(r^{-3})$$

12.
$$12^{-2}$$

13.
$$\left(\frac{3}{7}\right)^{-2}$$

14.
$$\left(\frac{4}{3}\right)^{-4}$$

15.
$$\frac{22r^3s^2}{11r^2s^{-3}}$$

$$16. \frac{-15w^0u^{-1}}{5u^3}$$

17.
$$\frac{8c^3d^2f^4}{4c^{-1}d^2f^{-3}}$$

18.
$$\left(\frac{x^{-3}y^5}{4^{-3}}\right)^0$$

19.
$$\frac{6f^{-2}g^3h^5}{54f^{-2}g^{-5}h^3}$$

$$20. \ \frac{-12t^{-1}u^5v^{-4}}{2t^{-3}uv^5}$$

21.
$$\frac{r^4}{(3r)^3}$$

22.
$$\frac{m^{-2}n^{-5}}{(m^4n^3)^{-1}}$$

23.
$$\frac{(j^{-1}k^3)^{-4}}{j^3k^3}$$

24.
$$\frac{(2a^{-2}b)^{-3}}{5a^2b^4}$$

25.
$$\left(\frac{q^{-1}r^3}{qr^{-2}}\right)^{-5}$$

26.
$$\left(\frac{7c^{-3}d^3}{c^5de^{-4}}\right)^{-1}$$

27.
$$\left(\frac{2x^3y^2z}{3x^4yz^{-2}}\right)^{-2}$$

- **28. BIOLOGY** A lab technician draws a sample of blood. A cubic millimeter of the blood contains 22^3 white blood cells and 22^5 red blood cells. What is the ratio of white blood cells to red blood cells?
- **29. COUNTING** The number of three-letter "words" that can be formed with the English alphabet is 26³. The number of five-letter "words" that can be formed is 26⁵. How many times more five-letter "words" can be formed than three-letter "words"?