Concept		Example	
Equation of a quadratic function or	1. Use the distributive property to multiply		to multiply
relationship: fits the form	3(2x + 5) and $3x(2x + 5)$. Which is a quadratic		is a quadratic
$y = ax^2 + bx + c$, in which a , b , and c are	expression?		
constants, $a \neq 0$.			
There must be an "x- squared " term, and	3(2x + 5) = 3(2x) + 3(5) = 6x + 15	j.
this must be the highest power in the	This is a	linear expression (See A	Noving Straight
equation.	Ahead),	since there is no power h	higher than 1.
	(Note: S	tudents first met the distr	ibutive property
Note: the presence of an x-squared term	in Accer	ntuate The Negative.)	
indicates that some multiplication with the			
independent variable x has taken place to			
create this equation. This hints at the type	One of t	he ways students can ma	ake sense of this
of contexts to which quadratic relationships	property	is to picture it as an area	a model, where
apply.	one fact	or is the width of a rectan	gle and the other
	is the ler	ngth.	-
Expanded form of the equation: is		-	
y = ax^2 + bx + c for some values of a, b, c		2x	
where $a \neq 0$.			
Factored form of the equation: is			
equivalent to the above but has the form			
y = (ax + c)(bx + d), for some values of a, b,	2	6×2	15.4
<i>c, d,</i> where $a \neq 0$ and $b \neq 0$. "ax + c" is one	300	ar	1.5%
factor and "bx + d" is another factor. The			
two factors are multiplied.			
Note: it is <i>not</i> always possible to start with a			
quadratic in expanded form and rewrite in			f
factored form, with rational values for <i>a</i> , <i>b</i> ,			
<i>c</i> , <i>d</i> . It is always possible to start with a	Therefor	re. 3x(2x + 5) = 6x ² + 15x	. The presence
quadratic equation in factored form and	of the "6	x ² " indicates this is a qua	dratic
rewrite in expanded form.	expressi	on.	
The distributive property and equivalent			
quadratic expressions: The distributive	2. Use t	the distributive property	to write the
property for multiplication over addition	factored	d form, $y = (x + 2)(x + 5)$, in expanded
states that $a(x + c) = ax + ac$ for example	form.		
3(2 + 10) = 2(2) + 3(10) This can be			
expanded to multiplying $(ax + b)(cx + d)$			
v = (ax + b)(cx + d) is the factored form of			

Vocabulary: Frogs, Fleas and Painted Cubes

a quadratic. If the distributive property is applied to this particular quadratic we get an **equivalent quadratic in expanded form**, $y = acx^2 + adx + bcx + bd$.

(The familiar "long" multiplication algorithm is an example of the use of the distributive property:

 $13 \times 25 = (3 + 10)(5 + 20) = (3)(5) + 3(20) + 10(5) + (10)(20) = 325.)$

	X	5	
£	x ²	5x	
2	2 <i>x</i>	10	

Therefore, y = (x + 2)(x + 5) is **equivalent** to $y = x^2 + 5x + 2x + 10$, or $y = x^2 + 7x + 10$.

3. Use the distributive property to multiply (a + b + c)(d + e + f)

	a	b	с
đ	ad	bd	cd
¢	ae	be	CE
f	af	bf	đ

Therefore, (a + b + c)(d + e + f)= ad + ae + af + bd + be + bf + cd + ce + cf.

4. Which of the following factored forms are *quadratic*?

- a) $y = (2x + 3)(x^2 + 5)$
- b) y = (2x + 3)(x 5)
- c) y = (2x + 3)(5x 3)
- d) y = (2x)(x + 2)
- e) $y = (2)(3 x^2)$
- f) $y = (2x)(x^2 + 3)$

a) If the distributive property is applied to this factored expression (or an area model is drawn) then one of the terms in the resulting expanded form is $2x^3$. So this is not a quadratic relationship.

1		
b) fact higf is 2 c) H qua d) H rela e) H This g)	ored expression then the to nest power in the resulting x^2 . This is a quadratic rela lighest power is in $10x^2$. T dratic relationship. lighest power is in $2x^2$. Th tionship. lighest power is in $2x^2$ (act is a quadratic relationship Highest power is in $2x^3$. T quadratic relationship.	s applied to this erm with the expanded form tionship. his is a is is a quadratic ually $-2x^2$).). This is not a
5. Write factore	the expanded form y = 2. d form .	x² + 10x in
Y = 2x ² say that the exp the "2x"	+ 10x can be written as y = . "2x" is a common factor in anded expression. When w then the other factor is "x	= 2x(x + 5). We both terms of e "factor out" + 5."
6. Write factore	the expanded form y = x ² d form.	² + 5x + 6 in
	X	3
x	x^2	3х
2	2x	6
Therefo y = (x +	re, y = x² + 5x + 6 is equiva 2)(x + 3).	alent to

	Note: M and fact <i>With Sy</i>	lore time is spent o toring quadratic ex mbols unit.	on multiplying pressions in t	binomials he <i>Say It</i>
Relating patterns of change in a table for	7. The u	perimeter of a recta	anale is 20. N	lake a table
a guadratic function to the equation:	show	ing possible dimer	nsions. What	patterns
In <i>linear</i> relationships, the v-value changes	appe	ar in the table? W	hat are the di	mensions
at a constant rate, as the x value changes	and a	area of the rectang	le with the are	eatest area?
by 1 unit. We say that, if the x-values are		5	J	
changing by a constant increment, then the	الأغلم مع		tana than tha	
first differences in v are constant.	If the pe	erimeter P = 20 me	ters, then the	area, A, or
indicating a constant rate of change. In	lie the	angle can be repre	sented as A	= LVV, where
quadratic relationships, first differences are		10 - 20 or 1 + 10 or 1	e wiulii. Sirice	; on ho
not constant, but second differences—the		r = 20 or L + vv =	iu, line area c	an be
differences between successive first			ting voluee for	
differences—are.	A - L(II	U – L). By Substitt	for A See to	
		responding values	IOFA. See la	ble below.
Symmetry in the table:	L	А	1 st diff.	2 nd diff.
In a table of the coordinate pairs that fit	1	1(10 – 1) = 1(9) =		
quadratic relationships, pairs with identical		9	16 0 - 7	
values of y will be arranged symmetrically	2	2(10 - 2) = 2(8) =	10 - 9 - 7	5 - 7 = -2
around some "center" coordinate pair.		16		• • -
Sometimes this symmetry is not visible in			21 – 16 = 5	
the table because the "center" pair is not	3	3(10 – 3) = 3(7) = 21		3-5=-2
given in the table, perhaps because the			24 – 21 = 3	
increments in the table need to be adjusted,	4	4(10-4) = 4(6) =		1 – 3 = -2
or perhaps because the "center" pair has		24	25 - 24 = 1	
irrational coordinate values.	5	5(10 – 5) = 5(5) =	20 - 24 - 1	-1 – 1 = -2
		25		
Note: this symmetry is a result of the	6	6(10, 6) - 6(4) -	24 – 25 = -1	2(1) = 2
multiplicative nature of quadratic	Ö	0(10-0) - 0(4) = 24		-3 - (-1)2
relationships. The same y-value will occur			21 – 24 = -3	
for two different x-values substituted into the	7	7(10-7) = 7(3) =		
equation $y = (ax + b)(cx + d)$ in the same	etc	21	Not	Constant
way that $y = (3)(5)$ gives the same result as	610		constant	oonstant

y = (5)(3).

The Area increases to a maximum of 25 and then decreases again. Pairs with identical values for the Area are symmetrically arranged around the maximum (5, 25). The symmetry occurs because at L = 5 both length and width are 5; on either side of the pair (5, 25) in the table are pairs representing rectangles with dimensions 4 by 6 and 6 by 4, which

constant

are, of con area. In the "center and "10 – this "center interchant 10 - L = 6	urse, congruent erms of the equ er" of the table o L" are equal, at er" pair the valu nged; at L = 6, 1	rectangles an ation the coor ccurs when th L = 5. On eit es of the fact 0 - L = 4, whi	d equal in dinate pair at e factors "L" her side of ors are le at L = 4,
The first of difference difference values incodecreasing decreasing decreasin	differences are es are all –2. (7 es, 7, 5, 3 etc, ir crease at a decre g again.)	not constant, There is a patt ndicating that t easing rate an	but the 2nd ern in the 1 st he Area id then start
8. What p y = x ² - 5	atterns appear x + 6?	in the table fo	r
The facto y = (x - 2)	bred form of the $P(x - 3)$	equation is	
It is not ne to see the	ecessary to write symmetry in th	e the equation e table. But w	in this form riting it in this
form make	es it clear where e bolded part of	e the symmetry table	y comes
Y	V	1 st diff	2 nd diff
0	6	1 011	2 011
-	-	2 – 6 = -4	
1	(1 – 2)(1 – 3) = -1(-2) = 2		-24 = 2
		0 – 2 = -2	
2	0		02 = 2
		0 - 0 = 0	
3	0		2 – 0 = 2
		2 – 0 = 2	
4	(4 – 2)(4 – 3) =		4 – 2 = 2

		2-0-2	
4	(4-2)(4-3) = (2)(1) = 2		4 – 2 = 2
		6 – 2 = 4	
5	6		
		Not constant	Constant

The pairs with **identical values for y are symmetrically arranged**. The "center" pair appears to be between (2, 0) and (3, 0). If we had chosen different increments for x we might see exactly where this "center" is. It occurs at (2.5,y). To find the value of y when x = 2.5 we can substitute in the original equation and find y = -0.25.

The first differences are not constant. The

	second differences are all 2.
	Note: This "method of differences" foreshadows the calculus idea of finding the derivative. In general, if $y = ax^2 + bx + c$, then the second differences (setting x-increments at 1 unit) will all be 2a. In calculus class students will learn to find first derivatives and second derivatives, and to relate these to the rate of change of y, and to the rate of change of the rate of change.
Patterns of change in a graph for quadratic relationships: In <i>linear</i> relationships the graph is a straight line because of the constant rate of change in y. For <i>quadratic</i> relationships the graph is a curve, indicating the non-constant rate of change in y; the curve will have an axis of symmetry; and the vertex, indicating the maximum or minimum value of y, will lie on this axis. If there are x-intercepts then the axis of symmetry will lie halfway between these x-intercepts. (This kind of curve is called a parabola .)	9. The equation $h = -16(t)^2 + 64(t) + 6$ models one- dimensional projectile motion. (The equation assumes that the motion occurs in a vacuum, but the predictions will be reasonably accurate for normal conditions.) What patterns of change occur in the graph and what do these patterns tell you about how the height of the projectile is changing over time? A table of values shows the expected symmetry. t -1 0 1 2 3 4 5 h -74 6 54 70 54 6 -74

the maximum height. The **x-intercepts** would be the points (t, 0), which do not appear in the table. On the graph we can approximate them as (-0.1, 0)and (4.1, 0). These tell us when the height of the projectile is 0 units, that is, when the projectile is on the ground. This happens after approximately 4.1 seconds. (The other x-intercept does not tell us anything meaningful in this context.)

Summary of informa format of quadratic of	tion from each equation:	10. What information about the graph of the $y = x(5 - 2x)$ can you deduce from the equation?
Factored x- intercepts Axis of symmetry Maximum/ minimum	Expanded y-intercept Steepness of curve Opens up or down	The equation is in factored form . We can deduce the x-intercepts by observing that we can make $y =$ 0 by substituting 0 for x and also 2.5 for x. So there are two x-intercepts: (0, 0) and (2.5, 0). The axis of symmetry must be midway between these points, at x = 1.25.
		The vertex will be at (1.25, y), on the graph of the parabola. We can find the y-value at the vertex by substituting 1.25 for x into the equation. Therefore, $y = 1.25(5 - 2.5) = 3.75$. The vertex is (1.25, 3.75). It remains to decide if this is a maximum or a minimum . If we look at the x-intercepts we see that this point has a higher y-value than either of these, so it can not be a minimum point. (1.25, 3.75) must be a maximum .
		Putting all this together we have: $ \begin{array}{c} 4 \\ 3.5 \\ 3 \\ 2.5 \\ 2 \\ 1.5 \\ 1 \\5 \\ $
		11. What information about the graph of $y = (x - x)$

2)(x + 4) can we deduce from the equation?
The equation is in factored form. As above we can deduce the x-intercepts by observing that we can make $y = 0$ by substituting $x = 2$ and $x = -4$ into this equation. The x-intercepts are (2, 0) and (-4, 0).
The axis of symmetry is, therefore, $x = -1$. The vertex is at (-1, y), and we can find this y value by substituting $x = -1$ into the equation, giving $y = (-1 - 2)(-1 + 4) = (-3)(3) = -9$. The vertex is (-1, -9).
To decide if this is a maximum or a minimum we could compare it to the x-intercepts; alternatively we could find points close to the vertex, on either side of the vertex, to get a picture of what is happening at the vertex. Thus, we might try $x = -2$ and $x = 0$, producing points (-2, -8) and (0, -8). These 2 points are symmetrically arranged around and above the vertex and so this time we have a minimum .
12. The expanded forms of the quadratic equations in examples 10 and 11 are: a) $y = 5x - 2x^2$ and b) $y = x^2 + 2x - 8$. What new information can be deduced from this expanded form?
 a) From the expanded form we see that, when x = 0, y = 0. Therefore, the y-intercept is (0, 0). We can also deduce that the graph will open downwards because the x-squared term, -2x², has a negative coefficient. (Students make this observation from many examples in class and homework.) From the down-facing orientation we deduce that the graph has a maximum, though the exact position of the maximum is easier to deduce from the factored form. b) From the expanded form we see that when

x = 0, y = -8. Therefore the y-intercept is (0, -8). From the term $1x^2$ we deduce that the curve will open upwards , and so the vertex will be a minimum , though, again, the exact location of the vertex will be easier to find from the factored form.
We can also deduce that $y = 5x - 2x^2$ will be a steeper and narrower parabola than $y = 1x^2 + 2x - 8$. This information comes from the coefficient <i>a</i> of the ax^2 term. As $ a $ increases the curve becomes narrower and steeper. (Again, students observe this from the many examples they see in class and homework.)
Note: students have many more opportunities to become comfortable with factoring quadratics and solving quadratic equations in <i>Say it With Symbols</i> .