Vocabulary: Frogs, Fleas and Painted Cubes

	b) If the distributive property is applied to this factored expression then the term with the highest power in the resulting expanded form is $2 x^{2}$. This is a quadratic relationship. c) Highest power is in $10 x^{2}$. This is a quadratic relationship. d) Highest power is in $2 x^{2}$. This is a quadratic relationship. e) Highest power is in $2 x^{2}$ (actually $-2 x^{2}$). This is a quadratic relationship. g) Highest power is in $2 x^{3}$. This is not a quadratic relationship. 5. Write the expanded form $y=2 x^{2}+10 x$ in factored form. $Y=2 x^{2}+10 x$ can be written as $y=2 x(x+5)$. We say that " $2 x$ " is a common factor in both terms of the expanded expression. When we "factor out" the " $2 x$ " then the other factor is " $x+5$." 6. Write the expanded form $y=x^{2}+5 x+6$ in factored form. Therefore, $y=x^{2}+5 x+6$ is equivalent to $y=(x+2)(x+3)$.

Relating patterns of change in a table for a quadratic function to the equation:

In linear relationships, the y-value changes at a constant rate, as the x value changes by 1 unit. We say that, if the x-values are changing by a constant increment, then the first differences in y are constant, indicating a constant rate of change. In quadratic relationships, first differences are not constant, but second differences-the differences between successive first differences-are.

Symmetry in the table:

In a table of the coordinate pairs that fit quadratic relationships, pairs with identical values of y will be arranged symmetrically around some "center" coordinate pair. Sometimes this symmetry is not visible in the table because the "center" pair is not given in the table, perhaps because the increments in the table need to be adjusted, or perhaps because the "center" pair has irrational coordinate values.

Note: this symmetry is a result of the multiplicative nature of quadratic relationships. The same y-value will occur for two different x-values substituted into the equation $y=(a x+b)(c x+d)$ in the same way that $y=(3)(5)$ gives the same result as $y=(5)(3)$.

Note: More time is spent on multiplying binomials and factoring quadratic expressions in the Say It With Symbols unit.
7. The perimeter of a rectangle is 20. Make a table showing possible dimensions. What patterns appear in the table? What are the dimensions and area of the rectangle with the greatest area?

If the perimeter $P=20$ meters, then the area, A, of the rectangle can be represented as $A=L W$, where L is the length and W is the width. Since $2(L+W)=20$ or $L+W=10$, the area can be written in terms of one of its dimensions,
$A=L(10-L)$. By substituting values for L we can find corresponding values for A . See table below.

L	A	$1{ }^{\text {st }}$ diff.	$2^{\text {nd }}$ diff.
1	$\begin{gathered} 1(10-1)=1(9)= \\ 9 \end{gathered}$		
		$16-9=7$	
2	$\begin{gathered} 2(10-2)=2(8)= \\ 16 \end{gathered}$		$5-7=-2$
		$21-16=5$	
3	$\begin{gathered} 3(10-3)=3(7)= \\ 21 \end{gathered}$		$3-5=-2$
		$24-21=3$	
4	$\begin{gathered} 4(10-4)=4(6)= \\ 24 \end{gathered}$		$1-3=-2$
		$25-24=1$	
5	$\begin{gathered} 5(10-5)=5(5)= \\ 25 \end{gathered}$		$-1-1=-2$
		$24-25=-1$	
6	$\begin{gathered} 6(10-6)=6(4)= \\ 24 \end{gathered}$		$-3-(-1)=-2$
		$21-24=-3$	
7	$\begin{gathered} 7(10-7)=7(3)= \\ 21 \end{gathered}$		
etc		Not constant	Constant

The Area increases to a maximum of 25 and then decreases again. Pairs with identical values for the Area are symmetrically arranged around the maximum $(5,25)$. The symmetry occurs because at $L=5$ both length and width are 5 ; on either side of the pair $(5,25)$ in the table are pairs representing rectangles with dimensions 4 by 6 and 6 by 4 , which

	second differences are all 2. Note: This "method of differences" foreshadows the calculus idea of finding the derivative. In general, if $y=a x^{2}+b x+c$, then the second differences (setting x-increments at 1 unit) will all be $2 a$. In calculus class students will learn to find first derivatives and second derivatives, and to relate these to the rate of change of y, and to the rate of change of the rate of change.							
Patterns of change in a graph for quadratic relationships: In linear relationships the graph is a straight line because of the constant rate of change in y . For quadratic relationships the graph is a curve, indicating the non-constant rate of change in y; the curve will have an axis of symmetry; and the vertex, indicating the maximum or minimum value of y, will lie on this axis. If there are x-intercepts then	9. The equation $h=-16(t)^{2}+64(t)+6$ models onedimensional projectile motion. (The equation assumes that the motion occurs in a vacuum, but the predictions will be reasonably accurate for normal conditions.) What patterns of change occur in the graph and what do these patterns tell you about how the height of the projectile is changing over time? A table of values shows the expected symmetry.							
the axis of symmetry will lie halfway	t	-1	0	1	2	3	4	5
between these x-intercepts. (This kind of	h	-74	6	54	70	54	6	-74

