How do we find the y-intercept?

We know the y-intercept is ... the value of y when $x=0$

Let's find it using ...
Expanded Form: $y=x^{2}+7 x+10$

$$
\begin{aligned}
& y=(0)^{2}+7(0)+10 \\
& y=10
\end{aligned}
$$

Factored Form: $y=(x+2)(x+5)$

$$
\begin{aligned}
& y=(0+2)(0+5) \quad(0,10) \\
& y=(2)(5) \\
& y=10
\end{aligned}
$$

How do we find the x-intercept(s)?

We know the x-intercept is ... the value of x when $y=0$.

Let's find them using ...

Expanded Form: $y=x^{2}+7 x+10 \quad$ Wharat?!

$$
0=x^{2}+7 x+10
$$

Factored Form: $y=(x+2)(x+5)$

$$
0=(x+2)(x+5)
$$

(what do we know about factors of 0?)

Zero Product Property
If $a \cdot b=0 \ldots$ we know either $a=0$, $b=0$, or both $a i b=0$.

Let's try this with ...
Expanded Form: $\mathrm{y}=\mathrm{x}^{2}+7 \mathrm{x}+10$

$$
0=x^{2}+7 x+10 \quad \begin{gathered}
\text { Dossn't } \\
\text { helphere. }
\end{gathered}
$$

Factored Form: $y=(x+2)(x+5)$

$$
\begin{array}{ll}
& 0=(x+2)(x+5) \\
(-2,0) & \begin{array}{l}
x+2=0 \\
(-5,0)
\end{array} \\
\frac{-2-2}{x=-2} & \frac{-5-5}{x-5}
\end{array}
$$

Best form for finding x-intercepts?

How do we find the Line of Symmetry?
We know ... the line of symmetry (LOS) is halfway between the x-intercepts.

How can we use what we know to calculate this?
Let's find the average of our x-intercepts.

$$
\begin{aligned}
\text { LOS }=\frac{-2+-5}{2} & =\frac{-7}{2}=-3.5 \\
\underbrace{x}_{\text {LOS is a line! }} & =-3.5
\end{aligned}
$$

How do we find the vertex?
We know the vertex is ... on the line of symmetry.

Let's find it using ...
Expanded Form: $y=x^{2}+7 x+10$

$$
\begin{aligned}
y & =(-3.5)^{2}+7(-3.5)+10 \\
y & =-26.75 \\
& =-2.25
\end{aligned}
$$

Factored Form: $y=(x+2)(x+5)$

$$
\begin{aligned}
& y=(-3.5+2)(-3.5+5) \\
&=(-1.5)(1.5) \\
&=-2.25 \\
& \underbrace{\text { Vertex }} \\
& \underbrace{(-25)}_{(-3.5,-2.25)}
\end{aligned}
$$

It is easier to use the factored form.

How does the value of ' a ' affect the parabola?

Use Desmos to graph the following:

$$
\begin{array}{ll}
y=x^{2} & y=-x^{2} \\
y=3 x^{2} & y=-3 x^{2} \\
y=0.5 x^{2} & y=-0.5 x^{2}
\end{array}
$$

What about the parabola does 'a' control?

Opens: $\quad a>0$ opens up
up/down $a<0$ opens down

Width: $\quad|a|$ is large \rightarrow Narrower
of parabola:
$|a|$ is small \rightarrow wider

What information can we get about a parabola from the different forms of the equation?

Expanded Form: $y=a x^{2}+b x+c$

width

Factored Form: $y=(x+d)(x+e)$ can find x-inks.

